https://doi.org/10.35754/0234-5730-2020-65-4-431-443

ВОЗМОЖНОСТИ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ ВСЕГО ТЕЛА ДЛЯ ДИАГНОСТИКИ И КОНТРОЛЯ ЛЕЧЕНИЯ БОЛЬНЫХ МНОЖЕСТВЕННОЙ МИЕЛОМОЙ

Луцик Н. С.*, Менделеева Л. П., Соловьев М. В., Куликов С. М., Чабаева Ю. А., Яцык Г. А.

ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, 125167, Москва, Россия

РЕЗЮМЕ

Введение. Магнитно-резонансная томография (MPT) всего тела с использованием диффузионно-взвешенных изображений является информативным методом диагностики для определения инфильтрации костного мозга у больных множественной миеломой (MM), а также для оценки динамики изменений после трансплантации аутологичных гемопоэтических стволовых клеток (ауто-TГСК).

Цель: изучить динамику поражения костного мозга у больных ММ методом МРТ всего тела до и после выполнения химиотерапии с последующей ауто-ТГСК.

Материалы и методы. В проспективное исследование по изучению поражения костного мозга методом MPT всего тела до и после высокодозной химиотерапии с ауто-ТГСК были включены 40 больных MM. Всем больным было проведено MPT-исследование всего тела до выполнения ауто-ТГСК и на +100 день после ауто-ТГСК. Оценка противоопухолевого ответа выполнялась после завершения индукции и на +100 день после ауто-ТГСК. Определяли количество и объем очагов поражения костного мозга до и на +100 день после ауто-ТГСК, измеряли коэффициент диффузии в данных очагах.

Результаты. Установлено значимое уменьшение количества очагов в костном мозге на 29 %, объема очагов на 40 %, а также измеряемого коэффициента диффузии (ИКД) в очагах на 33 %. Определялась значимая связь между относительным изменением количества очагов и относительным изменением объема очагов (r = 0.52, p = 0.0017). Обнаружена корреляция между относительным уменьшением количества очагов и ИКД (r = 0.47, p = 0.016). У больных, у которых по результатам МРТ выявлен очаг объемом более 7 см³, количество и объем очагов, а также показатели ИКД в данных очагах после ауто-ТГСК уменьшались в меньшей степени по сравнению с больными, объем максимального очага у которых был менее 7 см³.

Заключение. МРТ всего тела с включением в протокол сканирования диффузионно-взвешенных изображений и последующим определением количества и объема очагов, показателей ИКД в данных очагах до и после ауто-ТГСК является дополнительным диагностическим критерием для оценки противоопухолевого ответа у больных ММ после ауто-ТГСК.

Ключевые слова: множественная миелома, МРТ, МРТ всего тела, диффузионно-взвешенные изображения

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Финансирование: исследование не имело спонсорской поддержки.

Для цитирования: Луцик Н.С., Менделеева Л.П., Соловьев М.В., Куликов С.М., Чабаева Ю.А., Яцык Г.А. Возможности магнитно-резонансной томографии всего тела для диагностики и контроля лечения больных множественной миеломой. Гематология и трансфузиология. 2020; 65(4): 431–443. https://doi.org/10.35754/0234-5730-2020-65-4-431-443

WHOLE-BODY MAGNETIC RESONANCE IMAGING FOR DIAGNOSIS AND TREATMENT MONITORING IN MULTIPLE MYELOMA

Lutsik N. S.*, Mendeleeva L. P., Solovev M. V., Kulikov S. M., Chabaeva Yu. A., Yatsyk G. A.

National Research Center for Hematology, 125167, Moscow, Russian Federation

ABSTRACT

Introduction. Whole-body diffusion-weighted magnetic resonance imaging (MRI) is an informative method for bone marrow infiltration diagnosis in patients with multiple myeloma (MM) and post-monitoring in autologous haematopoietic stem cell transplantation (auto-HSCT).

Aim: to study bone marrow lesions in MM patients using whole-body MRI prior to and after chemotherapy with subsequent auto-HSCT.

Materials and methods. Forty patients with MM were included in a prospective study of whole-body MRI before and after high-dose chemotherapy with auto-HSCT. All patients had whole-body MRI prior to and at +100 day of auto-HSCT. Antitumour response was assessed after induction and at +100 day. The number and volume of bone marrow lesions prior to and at +100 day of auto-HSCT were determined, along with apparent diffusion coefficient (ADC) in the lesions.

Results. We observed a significant reduction of 29 % in the number of lesions, 40 % — in their volume and 33 % — in ADC. A significant correlation was revealed between relative reduction in the number and volume of foci (r = 0.52, p = 0.0017). A correlation was found between relative reduction in the foci number and ADC (r = 0.47, p = 0.016). Patients with lesions > 7 cm³ in MRI data exhibited a lesser reduction in the foci number and volume and ADC values after auto-HSCT compared to patients with lesions < 7 cm³.

Conclusion. Whole-body MRI with diffusion-weighted imaging and subsequent estimation of the number and volume of lesions and their ADC values prior to and after auto-HSCT add power to assessing antitumour response in MM patients with auto-HSCT.

Keywords: multiple myeloma, whole-body MRI, diffusion-weighted imaging

Conflict of interest: the authors declare no conflict of interest.

Financial disclosure: the study had no sponsorship.

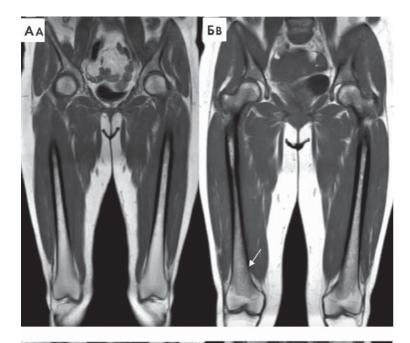
For citation: Lutsik N.S., Mendeleeva L.P., Solovev M.V., Kulikov S.M., Chabaeva Yu.A., Yatsyk G.A. Whole-body magnetic resonance imaging for diagnosis and treatment monitoring in multiple myeloma. Russian Journal of Hematology and Transfusiology (Gematologiya i transfuziologiya). 2020; 65(4): 431–443 (in Russian). https://doi.org/10.35754/0234-5730-2020-65-4-431-443

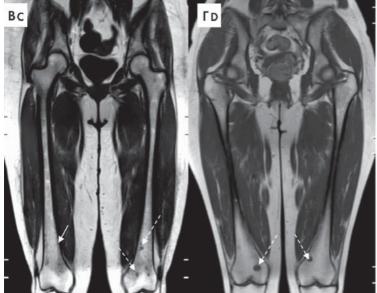
Множественная миелома (ММ) — это злокачественное лимфопролиферативное заболевание, характеризующееся инфильтрацией костного мозга плазматическими клетками, наличием моноклонального иммуноглобулина в сыворотке и/или в моче и остеолитическими поражениями костей. Поражение костного мозга может носить как очаговый, так и диффузный характер. Очаги остеодеструкций при ММ развиваются в результате повышения содержания цитокинов, высвобождаемых плазматическими клетками и спо-

собствующих избыточной экспрессии остеобластами активатора рецептора лиганда ядерного фактора и снижению экспрессии его ложного рецептора — остеопротегерина. Нарушение количественного соотношения между этими двумя молекулами приводит к повышению костной резорбции и уменьшения формирования костной ткани [1].

В соответствии с рекомендациями, разработанными Международной рабочей группой по изучению ММ [2], одним из критериев диагностики симптоматиче-

ской MM, отличающей ее от моноклональной гаммапатии неясного генеза и «тлеющей» (вялотекущей) миеломы, должно рассматриваться наличие более одного очага инфильтрации костного мозга в костях скелета размером ≥ 5 мм. В связи с этим выбор метода визуализации крайне важен для адекватной диагностики и своевременного начала лечения.


«Золотым стандартом» диагностики остеодеструктивных процессов до недавнего времени считалась классическая рентгенография. Однако данный метод исследования не позволяет визуализировать участки инфильтрации костного мозга, предшествующие появлению деструктивных изменений в костях [3]. Обнаружение деструктивных изменений в костях необходимо, но они являются вторичным следствием опухолевого процесса, локализующегося в костном мозге. Поэтому поиск очаговых поражений костного мозга имеет решающее значение для подтверждения диагноза ММ, особенно в случае дифференциальной диагностики моноклональной гаммапатии неясного генеза и «тлеющей» ММ. Идеальный метод визуализации при ММ должен включать такие характеристики, как исследование всего тела, выявление костно-деструктивных изменений и риска скелетных осложнений, опухолевую инфильтрацию костного мозга и экстрамедуллярное поражение, низкий уровень радиационного облучения и низкий риск осложнений, адекватное время исследования, низкую стоимость и широкую доступность. С помощью таких новых методов исследования, как магнитно-резонансная томография (МРТ) всего тела, позитронно-эмиссионная томография, совмещенная с магнитно-резонансной томографией (ПЭТ-МРТ), позитронно-эмиссионная томография, совмещенная с компьютерной томографией (ПЭТ-КТ), и низкодозовая компьютерная томография (КТ) скелета стала возможной оценка функциональных показателей состояния органов и тканей, вовлеченных в патологический процесс. Эти же методы визуализации применяются при диагностике моноклональной гаммапатии, «тлеющей» и симптоматической ММ, для оценки распространенности опухолевого процесса и исключения инфильтрации костного мозга, скелетных и внекостномозговых очагов, а также активности заболевания и наличия минимальной остаточной болезни после лечения.


Основными преимуществами низкодозовой КТ скелета и ПЭТ-КТ являются высокое разрешение визуализации кортикальной и трабекулярной части кости, относительно быстрое время исследования, возможность 3D-реконструкций изображений [4]. Однако в данных методах исследования используется ионизирующее излучение, что может быть ограничением для некоторой категории больных.

Благодаря возможности визуализации костного мозга без лучевой нагрузки MPT стала популярным методом оценки инфильтрации костного мозга, а также диагностики скелетных и внекостномозговых очагов поражения. МРТ позволяет оценить характеристики инфильтрации костного мозга, учитывая, что картина поражения костного мозга, выявленная при МРТ, имеет прогностическое значение и коррелирует с результатами лечения и общей выживаемостью [5]. МРТ является методом выбора при диагностике экстрамедуллярной локализации мягкотканных компонентов, а также в случае распространения плазмоцитов в сторону спинномозгового канала, поскольку при наличии компрессии спинного мозга может потребоваться экстренная нейрохирургическая помощь [6]. Выделяют четыре разных типа поражения костного мозга при ММ: а) отсутствие видимой патологии, что характерно для моноклональной гаммапатии и в 50-75 % случаев — для «тлеющей» ММ; б) диффузная инфильтрация, наблюдаемая почти у 80 % больных симптоматической ММ; в) микронодулярная инфильтрация (также называемая пестрой или «солью с перцем»), отражающая неоднородную структуру костного мозга с жировыми островками и низкой степенью интерстициальной инфильтрации плазматическими клетками (обычно < 20 %), обнаруженных у 3-5 % больных MM, в основном при ранней стадии заболевания; г) очаговую инфильтрацию (30 % больных), характеризующуюся участками диаметром ≥ 5 мм, отражающими высокую степень инфильтрации плазматическими клетками [3] (рис. 1).

Определение типа инфильтрации костного мозга имеет важное прогностическое значение, так как магнитно-резонансная (МР) картина нормального, микронодулярного и очагового типов инфильтрации костного мозга обычно соответствует I и II стадиям заболевания по системе ISS, тогда как диффузный тип инфильтрации обычно встречается при III стадии заболевания по системе ISS [7]. По данным исследования R. Walker и соавт. [8], наличие 7 и более очагов инфильтрации костного мозга размером ≥ 5 мм по данным МРТ коррелирует с уменьшением общей выживаемости (ОВ) больных ММ. При отсутствии очагов инфильтрации костного мозга 5-летняя ОВ больных достигла 73 %, в то время как при наличии от 1 до 7 очагов или более 7 очагов инфильтрации костного мозга ОВ составляла 68 и 55 %, соответственно [7]. Таким образом, в 2014 г. Международная рабочая группа по изучению ММ определила наличие более одного очага инфильтрации костного мозга размером ≥5 мм, выявленных по данным МРТ, одним из признаков опухолевой активности, а также одним из диагностических критериев симптоматической ММ, требующей начала специфической терапии [2].

Изменение характера изображения по данным МРТ может позволить оценить как прогрессию заболевания, так и ответ опухоли на лечение. Трансформация

Рисунок 1. Типы поражения костного мозга при ММ на примере бедренных костей в режиме Т1-ВИ. А — нормальный костный мозг, Б — диффузный тип поражения костного мозга (указан сплошной стрелкой), В — диффузно-очаговый тип поражения костного мозга (диффузная инфильтрация указана сплошной стрелкой, очаги поражения указаны прерывистой стрелкой), Γ — очаговый тип инфильтрации костного мозга (очаги поражения указаны прерывистой стрелкой)

Figure 1. Bone marrow infiltration patterns in MM patients, femur, T1WI. A – intact bone marrow, B – diffuse bone marrow infiltration (solid arrow), C – diffuse and focal infiltration (diffuse infiltration marked by solid arrow, foci – by dashed arrow), D – focal infiltration (dashed arrow)

нормальной MP-картины костного мозга в очаговый или диффузный тип инфильтрации, увеличение количества и/или размеров очагов измененного MP-сигнала, трансформация очагового типа инфильтрации костного мозга в диффузный тип свидетельствуют о прогрессии MM. Напротив, регрессия, уменьшение количества и/или размеров очагов инфильтрации костного мозга, трансформация диффузного и очагового типов инфильтрации костного мозга в нормальный тип свидетельствуют о положительном ответе на лечение [9]. Однако

патофизиологические процессы, происходящие в костном мозге во время лечения, не всегда возможно визуализировать на стандартных МР-последовательностях. Поэтому стала использоваться новая методика — МРТ всего тела с включением в протокол сканирования диффузионно-взвешенных изображений (ДВИ) с подавлением сигнала от окружающих тканей (diffusionweighted whole-body imaging with background body signal suppression, DWIBS). Эта методика открыла новые возможности оценки ответа опухоли на лечение и диагностики остаточной инфильтрации костного мозга у больных ММ. DWIBS собирает сигнал от экстра-, интра- и трансклеточного движения молекул воды в биологических тканях, характеризуется ограничением диффузии и повышением интенсивности МР-сигнала в очагах и участках поражения [10]. Количественным показателем интенсивности сигнала на диффузионновзвешенных изображениях является измеряемый коэффициент диффузии (ИКД). Определяется различие значений ИКД у больных с активным течением ММ и у больных в ремиссии.

В ряде исследований [11–13] показано, что использование данной последовательности при МРТ всего тела имеет преимущества перед традиционной МРТ, позволяет диагностировать большее количество очагов, дать более точную оценку ответа на лечение и выявлять диффузную инфильтрацию. В исследовании М. Horger и соавт. [11] были проанализированы МРТ-исследования 12 больных ММ до начала лечения и через 3 недели (медиана — 23 дня) после этапа лечения. Протокол сканирования для всех больных включал МРТ всего тела с применением диффузионно-взвешенных изображений (b = 50,400 и 800 с/мм²) с последующим вычислением измеряемого коэффициента диффузии. В ходе данного исследования было проанализировано 53 очага инфильтрации костного мозга. После этапа лечения по результатам лабораторных данных у 11 больных был выявлен положительный ответ на лечение, у 1 больного не было выявлено ответа на лечение. Выявлено повышение значений ИКД на 63,9 % в группе больных, ответивших на лечение, и понижение значений ИКД на 7,8 % в группе без ответа на лечение. Значения М-градиента понизились на 45,1 % в группе больных, ответивших на лечение, и повысились на 21,8 % в группе больных без ответа на лечение. Таким образом, МРТ всего тела с использованием диффузионно-взвешенных изображений и дальнейшим вычислением ИКД является дополнительным диагностическим критерием для оценки ответа опухоли на лечение.

В настоящее время все чаще применяется ПЭТ-МРТ, которая является новым и многообещающим методом исследования. Появление ПЭТ-сканеров изменило подход к оценке изменений костного мозга при ММ от анатомической к функциональной. ПЭТ относится

к неинвазивным функциональным методам визуализации и обычно использует 18F-фтордезоксиглюкозу, помеченную позитронным эмиттером, обнаруживающую опухолевую ткань на основе потребности в глюкозе [14]. В результате данного метода исследования возможно получение как функциональных, так и анатомических изображений, что актуально для диагностики поражения скелета при ММ, оценки ответа опухоли на проводимое лечение, мониторинга минимальной остаточной болезни [13]. При всех вышеперечисленных положительных возможностях МРТ у данного метода исследования имеется ряд недостатков. К ним относятся высокая стоимость и длительное время исследования, невозможность проведения исследования у больных с металлическими имплантами в организме, клаустрофобией.

Цель исследования: изучение динамики поражения костного мозга у больных ММ, выявляемого методом МРТ всего тела, до и после выполнения трансплантации аутологичных гемопоэтических стволовых клеток (ауто-ТГСК) и взаимосвязи данных изменений с противоопухолевым ответом и типом поражения костного мозга

Материалы и методы

В проспективное исследование по изучению поражения костного мозга методом МРТ всего тела до и после высокодозной химиотерапии с ауто-ТГСК было включено 40 больных ММ, получавших лечение в ФГБУ «НМИЦ гематологии» Минздрава России с февраля 2017 г. по январь 2020 г.

Диагноз ММ устанавливали в соответствии с критериями, разработанными Международной рабочей группой по изучению ММ [2]. Всем больным проводили индукционную терапию с включением бортезомиба. Затем выполняли мобилизацию и сбор CD34+ клеток крови с последующей однократной или двойной ауто-ТГСК после терапии мелфаланом в высоких дозах (140–200 мг/м²). Всем больным было проведено МРТ-исследование всего тела по нижеописанному протоколу после завершения индукционной терапии и на +100 день после ауто-ТГСК для оценки динамики изменений поражения костного мозга скелета. Оценка противоопухолевого ответа после завершения индукции и на 100-й день после ауто-ТГСК была произведена в соответствии с критериями, разработанными Международной рабочей группой по изучению ММ [2].

Протокол MPT. Все MPT-исследования были произведены на MP-томографе Philips Ingenia 1.5 Тл (Нидерланды), с использованием задней встроенной катушки FlexCoverage, передней катушки FlexCoverage и головной катушки HeadNeckSpine. Во время сканирования грудной и брюшной полостей производилось сканирование с задержкой дыхания. Введение контрастного вещества не проводилось. Позиция больного во время сканирования была на спине, головой вперед.

В протокол сканирования были включены следующие импульсные последовательности: Т1-взвешенные изображения (Т1-ВИ), Т2-взвешенные изображения (Т2-ВИ), Т2-ВИ с подавлением сигнала от жировой ткани, диффузионно-взвешенные изображения (ДВИ). Последовательности Т1-ВИ и Т2-ВИ с подавлением сигнала от жировой ткани выполняли в коронарных проекциях от уровня пяточных костей до верхнего края теменной кости и в сагиттальной проекции для визуализации позвоночника. Последовательности Т2-ВИ и ДВИ выполняли в аксиальных проекциях от уровня дистальных эпифизов бедренных костей до верхнего края теменной кости. Полное время сканирования составляло 70 мин.

Анализ изображений. После сканирования был произведен анализ МР-изображений до и после ауто-ТГСК на рабочей станции врача «ЛИНС Махаон». Для этого в режиме 3D-сегментирования были выделены очаги в костном мозге размером ≥ 5 мм, гиперинтенсивные на T2-ВИ, T2-STIR и ДВИ, гипоинтенсивные на Т1-ВИ, с учетом интервалов интенсивности сигналов и с помощью инструмента Regions of interests (ROI). Количество и общий объем данных очагов были суммированы в зависимости от локализации для каждого больного. Анализ диффузионно-взвешенных изображений был произведен с помощью системы Philips IntelliSpace Porta и включал в себя построение карт ИКД с помощью инструмента «Diffusion». Затем с помощью инструмента Regions of interests (ROI) на полученных ИКД-картах, мануально, были выделены очаги поражения костного мозга. Выделения и анализ очагов в костном мозге выполнялись по следующему алгоритму:

- 1. Размер очага ≥ 5 мм или площадь ≥ 50 мм².
- 2. Если в одной анатомической области или одной кости определялись множественные очаги поражения, то измерялся наиболее крупный из очагов.
- 3. Были исключены области с кровотечениями, сосудами, некрозами, а также область межпозвоночных дисков.
- 4. Измерение ИКД в каждом очаге производили три раза, далее для данных показателей было посчитано среднее арифметическое.

Количество и объем очагов, значения ИКД сравнивали до и после ауто-ТГСК.

Статистический анализ. Для анализа данных использованы стандартные методы описательной статистики, корреляционного анализа и методы линейного регрессионного анализа на повторных наблюдениях. В качестве меры точности оценки среднего использовалась стандартная ошибка среднего. Для расчетов применялись процедуры аналитической системы SAS 9.4.

Результаты

Распределение больных ММ согласно противоопухолевому ответу по критериям Международной рабочей группы по изучению ММ [2] после завершения индукционного этапа и после выполнения ауто-ТГСК представлено в таблице 1.

При анализе 80 МР-томограмм всего тела, которые выполнялись перед и после ауто-ТГСК 40 больным ММ, были выявлены МР-признаки изменений в костном мозге костей скелета, соответствующие постхимиотерапевтическому патоморфозу костного мозга. К ним относятся очаги измененного МР-сигнала в костях скелета (гиперинтенсивные на T2-ВИ и T2-STIR, гипоинтенсивные на T1-ВИ), различной формы, с четкими контурами; интенсивность МР-сигнала в данных очагах соответствует интенсивности ликвора. Данные очаги в костях скелета до ауто-ТГСК выявлены у 34 больных (85 %). Отсутствие очагов в костном мозге после завершения индукционной терапии по данным МРТ всего тела выявлено у 5 больных (12,5 %). У одного больного (2,5 %) после завершения индукционной терапии определялось диффузное поражение костного мозга, которое регрессировало после проведения ауто-ТГСК (рис. 2).

Для анализа динамики изменений количества и объема очагов в костном мозге были построены индивидуальные линии динамики количества и объема очагов и усредненная групповая регрессионная зависимость для всей группы больных (рис. 3 и 4). Выявлено значимое уменьшение количества очагов за период между двумя контрольными точками (ρ < 0,028) (рис. 3).

Таким образом, установлено уменьшение количества и объемов очагов в костном мозге и средних ИКД в очагах после ауто-ТГСК (табл. 2) (рис. 6, 7).

Для подтверждения гипотезы об изменении количества очагов в костном мозге после ауто-ТГСК и численной оценки этого эффекта для каждого больного был сформирован показатель относительного изменения числа очагов, который рассчитывали по формуле:

$$\frac{\text{число очагов до ауто-ТГСК} - \text{число очагов после ауто-ТГСК}}{\text{число очагов до ауто-ТГСК}} \times 100\,\%$$

Среднее значение данного показателя оказалось равно $-28,94 \pm 4,95 \%$ (p < 0,001).

Отмечено значимое уменьшение объема очагов за период между двумя контрольными точками (ρ < 0,0044) (рис. 4). Для подтверждения гипотезы об изменении объема очагов после ауто-ТГСК и численной оценки этого эффекта для каждого больного был сформирован показатель относительного изменения объема очагов, который рассчитывали по формуле:

$$\frac{\text{объем очагов до ауто-ТГСК} - \text{объем очагов после ауто-ТГСК}}{\text{объем очагов до ауто-ТГСК}} \times 100\,\%$$

Среднее значение этого показателя оказалось равно $-39,70 \pm 4,37 \%$ (p < 0,0001).

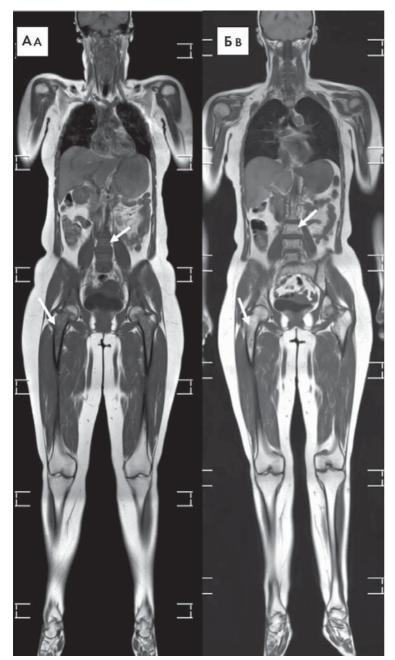
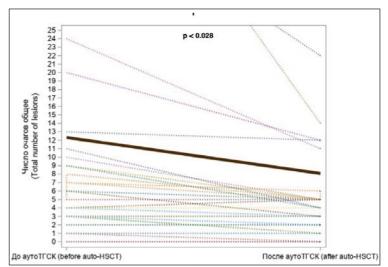
Проведен анализ динамики ИКД для каждого очага в контрольных точках. У каждого больного по измерениям в различных очагах рассчитывался средний ИКД, соответственно для каждого больного были рассчитаны значения этого показателя в двух контрольных временных точках. Выявлено значимое изменение среднего

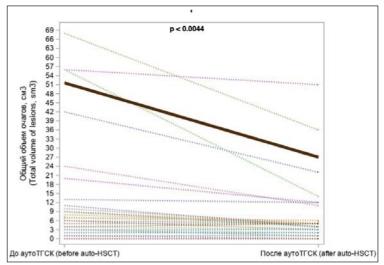
Таблица 1. Количество, объем очагов и средний ИКД до и после ауто-ТГСК (среднее ± стандартная ошибка среднего) **Table 1.** Number, volume and mean ADC value of lesions prior to and after auto-HSCT (mean ± standard error)

Характеристика противоопухолевого ответа	Частота противоопухолевого ответа Antitumor response rate		
Antitumor response property	До ауто-ТГСК Prior to auto-HSCT	После ауто-ТГСК After auto-HSCT	
Полная ремиссия (ПР) Complete response (CR)	17 (42,5 %)	23 (57,5 %)	
Очень хорошая частичная ремиссия (ОХЧР) Very good partial response (VGPR)	12 (30 %)	11 (27,5 %)	
Частичная ремиссия (ЧР) Partial response (PR)	10 (25 %)	4 (10 %)	
Стабилизация заболевания (СЗ) Stable disease (SD)	1 (2,5 %)	2 (5 %)	

Таблица 2. Количество, объем очагов и средний ИКД до и после ауто-ТГСК (среднее ± стандартная ошибка среднего) **Table 2.** Number, volume and mean ADC value of lesions prior to and after auto-HSCT (mean ± standard error)

	чество очагов er of lesions	Средний объем очагов, см ³ Mean volume of lesions, cm ³		Средний показатель ИКД, × 10 ⁻³ мм ² Mean ADC, × 10 ⁻³ mm ² /sec	
До ауто-ТГСК Prior to auto-HSCT	После ауто-ТГСК After auto-HSCT		После ауто-ТГСК After auto-HSCT		После ауто-ТГСК After auto-HSCT
12,76 ± 2,89	8,31 ± 2,4	50,79 ± 12,0	27,57 ± 5,56	1,94 ± 0,26	1,59 ± 0,25


Рисунок 2. MPT всего тела больного Г. ММ, импульсная последовательность T1-TSE, до (A) и после (Б) ауто-ТГСК. До ауто-ТГСК определялось диффузное поражение костного мозга костей скелета, выглядит более темным на T1-BИ (указано стрелкой). После ауто-ТГСК определялось восстановление нормальной интенсивности МР-сигнала от костного мозга, выглядит более светлой на T1-BИ (указано стрелкой) Figure 2. Whole-body MRI (T1 TSE) of MM patient G. prior to (A) and after (B) auto-HSCT. Diffuse pattern in bone marrow prior to auto-HSCT, darker in T1WI (arrow). Normal bone marrow contrast recovery after auto-HSCT, brighter in T1WI (arrow)

ИКД за период между двумя контрольными точками (ρ < 0,001) (рис. 5). Среднее значение относительного изменения ИКД равно $-33,02 \pm 3,68 \%$ (ρ < 0,0001).

Для анализа соответствия изменений по результатам MPT с противоопухолевым ответом по критериям Международной рабочей группы по изучению MM [2] все больные были разделены на три группы в зависимости от динамики противоопухолевого ответа после ауто-ТГСК: группа 1-с положительной динамикой, группа 2- без динамики и группа 3-с отрицательной динамикой (табл. 3).

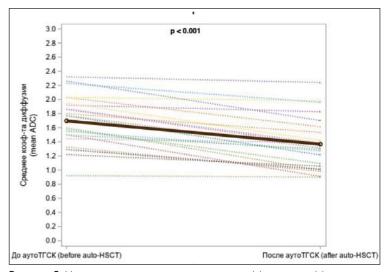


Рисунок 3. Индивидуальные зависимости изменения количества очагов **Figure 3.** Individual variation in number of lesions

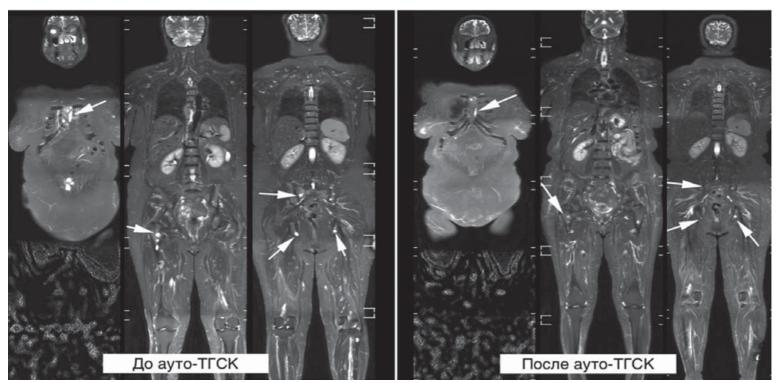


Рисунок 4. Индивидуальные зависимости изменения объема очагов в костях скелета

Figure 4. Individual variation in volume of skeletal bone lesions

Рисунок 5. Индивидуальные изменения среднего коэффициента диффузии **Figure 5.** Individual variation in mean ADC values

Рисунок 6. МРТ всего тела больной И. ММ импульсная последовательность T2-STIR, до и после ауто-TГСК. Отмечается уменьшение количества очагов в костях скелета, сокращение их размеров (указаны стрелками)

Figure 6. Whole-body MRI, patient I. T2 STIR sequence, prior to and after auto-HSCT. Reduction in number and volume of skeletal bone lesions (marked by arrows)

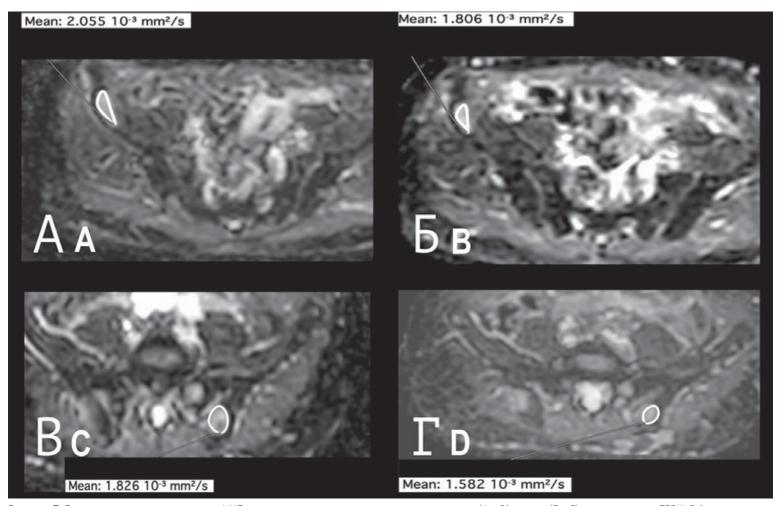


Рисунок 7. Динамика изменений показателей ИКД в очагах поражения костного мозга костей таза до (A и B) и после (Б и Г) проведения ауто-ТГСК. Области интереса выделены мануально инструментом Region of interest (ROI). Определяется снижение показателей ИКД после ауто-ТГСК

Figure 7. ADC dynamics in pelvic bone marrow lesions prior to (A, C) and after (B, D) auto-HSCT. Areas manually selected with Region of Interest (ROI) tool. ADC reduction after auto-HSCT

Таблица 3. Распределение больных по группам в зависимости от изменения противоопухолевого ответа после ауто-ТГСК **Table 3.** Patient distribution in cohorts according to antitumour response after auto-HSCT

Группы	Противоопухолевый ответ Antitumor response		Число больных
Cohorts	До ауто-ТГСК Prior to auto-HSCT	После ауто-ТГСК After auto-HSCT	Number of patients
Группа 1 (положительная динамика) Cohort 1 (positive dynamic), n = 10	C3 SD	ЧР PR	1
	ЧР PR	OXYP VGPR	3
	OXYP VGPR	ПР CR	3
	HP PR	ПР CR	3
Группа 2 (без динамики) Cohort 2 (invariant), n = 27	ЧР PR	YP PR	3
	OX4P VGPR	OX4P VGPR	8
	ПР CR	Π P CR	16
	ЧР PR	C3 SD	1
Группа 3 (отрицательная динамика) Cohort 3 (negative dynamic), n = 3	OX4P VGPR	C3 SD	1
	ПР CR	OX4P VGPR	1

Примечание. C3 — стабилизация заболевания, ЧР — частичная ремиссия, ОХЧР — очень хорошая частичная ремиссия, ПР — полная ремиссия. Note. SD — stable disease, PR — partial response, VGPR — very good partial response, CR — complete response.

Таблица 4. Показатели относительного изменения количества и объема очагов, относительного изменения среднего ИКД в зависимости от динамики противоопухолевого ответа

Table 4. Relative	change in lesion	on number volume	e and mean ADC at	antitumour response

Динамика противоопухолевого ответа Antitumor response	Группа 1 Cohort 1 n = 10	Группа 2 Cohort 2 n = 27	Группа 3 Cohort 3 n = 3
Относительное изменение количества очагов (%) Relative lesion number change (%)	-22,21 ± 11,93 % (p = 0,09)	-29,82 ± 5,39 % (p < 0,0001)	-13,88 ± 7,34 % (p = 0,19)
Относительное изменение объема очагов (%) Relative lesion volume change (%)	-42,38 ± 4,81 % (p = 0,0004)	-32,81 ± 5,37 % (p < 0,0001)	-9,29 ± 5,37 % (p = 0,19)
Относительное изменение среднего ИКД (%) Relative mean ADC change (%)	-26,53 ± 5,36 % (p = 0,0017)	-36,3 ± 4,68 % (p < 0,0001)	-19,32 ± 18,08 % (p = 0,39)

Примечание. ИКД — измеряемый коэффициент диффузии.

Note. ADC — apparent diffusion coefficient.

Было выявлено, что уменьшение среднего количества и объемов очагов, среднего показателя ИКД по результатам МРТ было более выражено в группах 1 и 2, по сравнению с группой 3 (табл. 4).

Корреляционный анализ выявил связь между относительным изменением количества очагов и относительным изменением объема очагов (r=0.52, $\rho=0.0017$), а также между относительным уменьшением количества очагов и ИКД (r=0.47, $\rho=0.016$). Значимой связи между относительным изменением объема очагов и относительным изменением ИКД не обнаружено (r=0.18, $\rho=0.38$).

Определены очаги, объем и показатели ИКД в которых значительно не изменялись после ауто-ТГСК. Объем данных очагов варьировал от 7 до 147 см³. Очаги больше 7 см³ были определены как «крупные». Все больные были распределены на две группы в зависимости от типа поражения костного мозга: к группе А были отнесены больные, у которых по результатам МРТ был выявлен крупный очаг поражения костного мозга объемом более 7 см³; в группу Б были отнесены больные, у которых максимальный объем очага поражения костного мозга по результатам МРТ

был менее 7 см³. Установлено, что в группе А количество очагов уменьшалось на 20,56 \pm 7,02 % (p = 0.01), средний объем очагов уменьшался на 25,01 ± 5,0 % $(\rho = 0.0002)$, средний ИКД уменьшался на $25.11 \pm 5.35 \%$ (р = 0,0005). В группе Б количество очагов уменьшалось на $39.87 \pm 6.45 \%$ (p < 0.0001), объем очагов уменьшался на $49.34 \pm 5.64 \%$ (p < 0.0001), ИКД уменьшался на $37,38 \pm 5,23 \%$ (p < 0,0001). Таким образом, наиболее выражено уменьшение количества, объема очагов и ИКД было в группе Б. Статистически значимого различия относительного изменения количества очагов в группах не выявлено (p = 0.069), было определено статистически достоверное различие относительного изменения объема опухоли в группах (p = 0.0046). Значимых различий относительного изменения ИКД в группах обнаружено не было (p = 0.12).

Следовательно, у больных, у которых по результатам МРТ выявлен очаг объемом более 7 см 3 , количество и объем очагов, а также показатели ИКД в данных очагах после ауто-ТГСК уменьшались в меньшей степени по сравнению с больными, объем максимального очага у которых был менее 7 см 3 .

Обсуждение

Высокая информативность МРТ как неинвазивного метода визуализации для больных ММ описана во многих исследованиях [3, 10]. В отличие от ПЭТ-КТ и КТ, в данном методе исследования не применяется ионизирующее излучение. Это позволяет повторно обследовать больных через небольшой промежуток времени, что необходимо для оценки ответа опухоли на лечение у больных ММ.

J. Hillengass и соавт. [15] установили связь между ответом опухоли на лечение по критериям Международной рабочей группы по изучению ММ [2] и «визуальным» противоопухолевым ответом по результатам МРТ всего тела. Они проанализировали результаты МРТ всего тела у 100 больных ММ, которым выполняли исследование до начала терапии и через 3-6 месяцев после выполнения ауто-ТГСК. Полный регресс очагов поражения по результатам МРТ всего тела расценивали как ПР, уменьшение количества очагов поражения на 50 % и более оценивали как ЧР, уменьшение количества очагов менее чем на 50 % или сохранение прежнего количества очагов оценивали как СЗ, увеличение количества очагов поражения расценивали как прогрессию заболевания. Выявлена слабая связь между результатами оценки противоопухолевого ответа после ауто-ТГСК по критериям Международной рабочей группы по изучению ММ и результатами МРТ всего тела (95 % доверительный интервал 0,05-0,45, ρ = 0,01). Однако в данной работе в протоколе сканирования МРТ всего тела использовали только стандартные импульсные последовательности. Использование дополнительных импульсных последовательностей,

таких как ДВИ, дает дополнительную информацию, которая помогает оценить противоопухолевый ответ. В нашей работе были выявлены корреляции между уменьшением количества и объема очагов, а также уменьшением количества очагов и уменьшением ИКД. Уменьшение ИКД после ауто-ТГСК можно объяснить восстановлением нормального жирового костного мозга и костной структуры в очагах поражения. В жировой ткани расположение клеток менее плотное и, соответственно, в жировом костном мозге определяются низкие показатели ИКД [16]. После завершения индукционной терапии в очагах поражения возможны геморрагические изменения и отек вследствие гибели плазматических клеток, данные изменения способствуют усилению диффузии воды и увеличению ИКД [17]. Таким образом, уменьшение ИКД в очагах поражения костного мозга после ауто-ТГСК может рассматриваться как дополнительный критерий оценки противоопухолевого ответа, наряду с уменьшением количества и объема данных очагов.

Выявлено, что объем очагов поражения костного мозга, определяемый по результатам МРТ всего тела, влиял на изменение количества, общего объема очагов, показателей ИКД в данных очагах после ауто-ТГСК. У больных с очагами поражения объемом более 7 см³ количество и объем очагов, а также показатели ИКД в данных очагах уменьшались в меньшей степени, чем у больных с максимальным объемом очага менее 7 см³. В литературе не описана подобная закономерность. Данный феномен может быть объяснен тем, что при наличии крупного очага поражения в костном мозге весь объем опухоли или большая его часть формирует данный очаг, следственно, суммарный объем опухоли значимо не изменялся после ауто-ТГСК. Уменьшение размеров таких крупных очагов и восстановление нормального костного мозга происходит, начиная с периферии очага, соответственно, значения ИКД в центральных его отделах также существенно не изменяются. Однако при наличии более мелких очагов, наряду с крупным, ИКД в среднем будет уменьшаться за счет более мелких очагов, чем можно объяснить отсутствие корреляции между относительным уменьшением объема очагов и ИКД. Подтвердить это предположение можно проведением МРТ всего тела данной группы больных в дальнейших контрольных точках наблюдения для определения динамики изменений наиболее крупных очагов поражения. У больных с максимальным объемом очагов менее 7 см³ уменьшение количества, общего объема очагов и показателей ИКД выражено в большей степени. Восстановление нормального костного мозга в очагах поражения имеет центростремительный характер, и при изначальном небольшом размере очагов, даже если их было большое количество, суммарный объем очагов поражения и ИКД уменьшатся в большей степени, а также уменьшится количество

очагов за счет полного регресса части из них. Можно предположить, что у больных с крупными очагами поражения изменения по результатам МРТ всего тела после ауто-ТГСК выражены в меньшей степени, чем у больных с меньшим объемом максимального очага.

К ограничениям работы можно отнести небольшое число больных, отсутствие первичной МРТ всего тела до начала терапии, а также малое количество иссле-

дований МРТ всего тела в динамике в контрольных точках наблюдения.

Таким образом, МРТ всего тела с включением в протокол сканирования ДВИ и последующим определением количества и объема очагов, показателей ИКД в данных очагах до и после ауто-ТГСК могут служить дополнительным диагностическим критерием для оценки противоопухолевого ответа у больных ММ после ауто-ТГСК.

Литература

- 1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016; 61(1) (приложение 2): 24. DOI: 10.18821/0234-5730-2016-61-1.
- 2. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15(12): e538–48. DOI: 10.1016/S1470-2045(14)70442-5.
- 3. Terpos E., Dimopoulos M.A., Moulopoulos L.A. The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book. 2016; 35: e407–17. DOI: 10.14694/EDBK_159074.
- 4. Mahnken A.H., Wildberger J.E., Gehbauer G. et al. Multidetector CT of the spine in multiple myeloma: Comparison with MR imaging and radiography. Am J Roentgenol. 2002; 178(6): 1429–36. DOI: 10.2214/ajr.178.6.1781429.
- 5. Healy C.F., Murray J.G., Eustace S.J. et al. Multiple myeloma: A review of imaging features and radiological techniques. Bone Marrow Res. 2011; 2011: 1–9. DOI: 10.1155/2011/583439.
- 6. Dimopoulos M.A., Hillengass J., Usmani S. et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: A consensus statement. J Clin Oncol. 2015; 33(6): 657–64. DOI: 10.1200/JCO.2014.57.9961.
- 7. Moulopoulos L.A., Gika D., Anagnostopoulos A. et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005; 16(11): 1824–8. DOI: 10.1093/annonc/mdi362.
- 8. Walker R., Barlogie B., Haessler J. et al. Magnetic resonance imaging in multiple myeloma: Diagnostic and clinical implications. J Clin Oncol. 2007; 25(9): 1121–8. DOI: 10.1200/JCO.2006.08.5803.
- 9. Dutoit J.C., Verstraete K.L. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings. Insights Imaging. 2016; 7(4): 553–69. DOI: 10.1007/s13244-016-0492-7.
- 10. Ferrari C., Minoia C., Asabella A.N. et al. Whole body magnetic resonance with diffusion weighted sequence with body signal suppression compared to (18)F-FDG PET/CT in newly diagnosed lymphoma. Hell J Nucl Med. 2014; 17(Suppl 1): 40–9.
- 11. Horger M., Weisel K., Horger W. et al. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: Preliminary results. Am J Roentgenol. 2011; 196(6): W790–5. DOI: 10.2214/AJR.10.5979.
- 12. Lin C., Luciani A., Itti E. et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol. 2010; 20(8): 2027–38. DOI: 10.1007/s00330-010-1758-y.
- 13. Sachpekidis C., Hillengass J., Goldschmidt H. et al. Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015; 5(5): 469–78.

References

- 1. Mendeleeva L.P., Votyakova O.M., Pokrovskaya O.S. et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016; 61(1): (Suppl 2): 24. DOI: 10.18821/0234-5730-2016-61-1. (In Russian).
- 2. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15(12): e538–48. DOI: 10.1016/S1470-2045(14)70442-5.
- 3. Terpos E., Dimopoulos M.A., Moulopoulos L.A. The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book. 2016; 35: e407–17. DOI: 10.14694/EDBK_159074.
- 4. Mahnken A.H., Wildberger J.E., Gehbauer G. et al. Multidetector CT of the spine in multiple myeloma: Comparison with MR imaging and radiography. Am J Roentgenol. 2002; 178(6): 1429–36. DOI: 10.2214/ajr.178.6.1781429.
- 5. Healy C.F., Murray J.G., Eustace S.J. et al. Multiple myeloma: A review of imaging features and radiological techniques. Bone Marrow Res. 2011; 2011: 1–9. DOI: 10.1155/2011/583439.
- 6. Dimopoulos M.A., Hillengass J., Usmani S. et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: A consensus statement. J Clin Oncol. 2015; 33(6): 657–64. DOI: 10.1200/JCO.2014.57.9961.
- 7. Moulopoulos L.A., Gika D., Anagnostopoulos A. et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005; 16(11): 1824–8. DOI: 10.1093/annonc/mdi362.
- 8. Walker R., Barlogie B., Haessler J. et al. Magnetic resonance imaging in multiple myeloma: Diagnostic and clinical implications. J Clin Oncol. 2007; 25(9): 1121–8. DOI: 10.1200/JCO.2006.08.5803.
- 9. Dutoit J.C., Verstraete K.L. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings. Insights Imaging. 2016; 7(4): 553–69. DOI: 10.1007/s13244-016-0492-7.
- 10. Ferrari C., Minoia C., Asabella A.N. et al. Whole body magnetic resonance with diffusion weighted sequence with body signal suppression compared to (18) F-FDG PET/CT in newly diagnosed lymphoma. Hell J Nucl Med. 2014; 17(Suppl 1): 40–9.
- 11. Horger M., Weisel K., Horger W. et al. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: Preliminary results. Am J Roentgenol. 2011; 196(6): W790–5. DOI: 10.2214/AJR.10.5979.
- 12. Lin C., Luciani A., Itti E. et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol. 2010; 20(8): 2027–38. DOI: 10.1007/s00330-010-1758-y.
- 13. Sachpekidis C., Hillengass J., Goldschmidt H. et al. Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015; 5(5): 469–78.

14. Соловьев М.В., Менделеева Л.П., Яцык Г.А. и др. Мониторинг поражения костного мозга у больных множественной миеломой после трансплантации аутологичных стволовых клеток с помощью магнитно-резонансной томографии. Гематология и трансфузиология. 2018; 63(2): 103–12. DOI: 10.25837/HAT.2018.67..2..001.

15. Hillengass J., Ayyaz S., Kilk K. et al. Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica. 2012; 97(11): 1757–60. DOI: 10.3324/haematol.2012.065359.

16. Stecco A., Buemi F., lannessi A. et al. Current concepts in tumor imaging with whole-body MRI with diffusion imaging (WB-MRI-DWI) in multiple myeloma and lymphoma. Leuk Lymphoma. 2018; 59(11): 2546–56. DOI: 10.1080/10428194.2018.1434881.

17. Padhani A.R., Liu G., Mu-Koh D. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia. 2009; 11(2): 102–25. DOI: 10.1593/neo.81328.

Информация об авторах

Луцик Наталья Сергеевна, врач-рентгенолог отделения магнитнорезонансной томографии и ультразвуковой диагностики, ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: lutsik.n.s@gmail.com

ORCID: https://orcid.org/0000-0002-7556-2054

Менделеева Лариса Павловна, доктор медицинских наук, профессор, заместитель генерального директора по научной работе и инновациям, ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: mendeleeva.l@blood.ru

ORCID: https://orcid.org/0000-0002-4966-8146

Соловьев Максим Валерьевич, кандидат медицинских наук, заведующий отделением интенсивной высокодозной химиотерапии парапротеинемических гемобластозов, ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: maxsolovej@mail.ru

ORCID: https://orcid.org/0000-0002-7944-6202

Куликов Сергей Михайлович, кандидат технических наук, руководитель информационно-аналитического отдела, ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: smkulikov@mail.ru

ORCID: http://orcid.org/0000-0002-6288-7570

 Чабаева Юлия Александровна,
 кандидат технических наук,
 старший

 научный сотрудник информационно-аналитического отдела,
 ФГБУ

 «Национальный медицинский исследовательский центр гематологии»

 Министерства здравоохранения Российской Федерации,

e-mail: uchabaeva@gmail.com

ORCID: http://orcid.org/0000-0001-8044-598X

14. Solovev M.V., Mendeleeva L.P., Yatsyk G.A. et al. Monitoring bone marrow lesions by magnetic resonance imaging in patients with multiple myeloma after autologous stem cell transplantation. Gematologiya i transfuziologiya. 2018; 63(2): 103–12. DOI: 10.25837/HAT.2018.67..2..001. (In Russian).

15. Hillengass J., Ayyaz S., Kilk K. et al. Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica. 2012; 97(11): 1757–60. DOI: 10.3324/haematol.2012.065359.

16. Stecco A., Buemi F., lannessi A. et al. Current concepts in tumor imaging with whole-body MRI with diffusion imaging (WB-MRI-DWI) in multiple myeloma and lymphoma. Leuk Lymphoma. 2018; 59(11): 2546–56. DOI: 10.1080/10428194.2018.1434881.

17. Padhani A.R., Liu G., Mu-Koh D. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia. 2009; 11(2): 102–25. DOI: 10.1593/neo.81328.

Information about the authors

Natalia S. Lutsik*, Radiologist, Department of Magnetic Resonance Imaging and Ultrasound, National Research Center for Hematology,

e-mail: lutsik.n.s@gmail.com

ORCID: https://orcid.org/0000-0002-7556-2054

Larisa P. Mendeleeva, Dr. Sci. (Med.), Professor, Deputy Director for Research and Innovation, National Research Center for Hematology,

e-mail: mendeleeva.l@blood.ru

ORCID: https://orcid.org/0000-0002-4966-8146

Maxim V. Solovev, Cand. Sci. (Med.), Head of the Department of Intensive High-Dose Chemotherapy for Paraproteinemic Hemoblastoses, National Research Center for Hematology,

e-mail: maxsolovej@mail.ru

ORCID: https://orcid.org/0000-0002-7944-6202

Sergey M. Kulikov, Cand. Sci. (Tech.), Head of the Information and Analysis Department, National Research Center for Hematology,

e-mail: smkulikov@mail.ru

ORCID: http://orcid.org/0000-0002-6288-7570

Yulia A. Chabaeva, Cand. Sci. (Tech.), Senior Researcher, Information and Analysis Department, National Research Center for Hematology,

e-mail: uchabaeva@gmail.com

ORCID: http://orcid.org/0000-0001-8044-598X

Яцык Галина Александровна, кандидат медицинских наук, врачрентгенолог, заведующая отделением магнитно-резонансной томографии
и ультразвуковой диагностики, ФГБУ «Национальный медицинский
исследовательский центр гематологии» Министерства здравоохранения
Российской Федерации,
e-mail: yatsyk.g@blood.ru

ORCID: https://orcid.org/0000-0001-5085-4045

1 // 0/

* Автор, ответственный за переписку

Поступила: 19.03.2020 Принята в печать: 27.10.2020 **Galina A. Yatsyk,** Cand. Sci. (Med.), Radiologist, Head of the Department of Magnetic Resonance Imaging and Ultrasound, National Research Center for Hematology,

e-mail: yatsyk.g@blood.ru

ORCID: https://orcid.org/0000-0001-5085-4045

* Corresponding author

Received 19 Mar 2020 Accepted 27 Oct 2020