ВИРУСНЫЕ ИНФЕКЦИИ

Алешина О.А.

ЗНАЧЕНИЕ ПРИМЕНЕНИЯ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ К S-БЕЛКУ SARS-COV-2 У ПАЦИЕНТОВ С ЗАБОЛЕВАНИЯМИ СИСТЕМЫ КРОВИ

ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Пандемия COVID-19 стала вызовом для всей системы здравоохранения. Исследования, проведенные за 3 года существования данной инфекции, показали, что эта инфекция является особо опасной для пациентов с иммунодефицитными состояниями, онкологическими, и в частности с онкогематологическими, заболеваниями. Так, летальность в течение первого месяца от инфицирования в общей популяции заболевших не превышала 2%, в то время как эти показатели для больных некоторыми гемобластозами достигали 50% (например, острыми миелоидными лейкозами и хроническим лимфолейкозом). Преобладающей причиной смерти в первый месяц от инфицирования у больных с заболеваниями системы крови были именно осложнения COVID-19, что еще раз подтверждало необходимость разработки не только эффективных методов терапии у этой

когорты пациентов, но и профилактических подходов. Применение вакцин и моноклональных антител (МАТ) против SARS-CoV-2 является наиболее перспективным методом профилактики у больных с онкогематологическими заболеваниями.

Цель. Оценить значение применения моноклональных антител цилгавимаб+тиксагевимаб («эвушелд») у пациентов с заболеваниями системы крови при профилактике и терапии COVID-19.

Материалы и методы. С мая по август 2022 года 95 пациентов, проходивших лечение в ФГБУ «НМИЦ гематологии» Минздрава России с заболеваниями крови, получили введение цилгавимаб+тиксагевимаб. С целью профилактики инфицирования SARS-CoV-2 68 пациентам вводилась 1 доза препарата 150 мг тиксагевимаб+150 мг цилгавимаб однократно внутримышечно. Остальным 27 пациентам было введено 2 дозы препарата (300 мг тиксагевимаб+300 мг цилгавимаб внутримышечно) с лечебной целью в день подтверждения инфицирования COVID-19 по данным ПЦР. Основные характеристики пациентов, включенных в исследование представлены в таблице 1. Медиана наблюдения за пациентами составила 6 месяцев (6–7 мес).

Результаты. Ни у одного из пациентов не отмечено неблагоприятных явлений ни непосредственных, ни отсроченных. В том числе важно указать, что у пациентов с гемофилией на фоне заместительной терапии фактором не было отмечено развитие гематом в месте внутримышечных инъекций. В группе пациентов профилактики COVID-19 в течение 6 месяцев наблюдения отмечено 4 случая инфицирования COVID-19. Тяжесть течения новой коронавирусной инфекции в 3-х случаях оценена как легкая, в одном случае — тяжелого течения. Все пациенты живы в течение месяца от момента

инфицирования SARS-CoV-2. В группе пациентов, получивших МАТ в целях терапии COVID-19, погибших пациентов в течение первого месяц наблюдения от инфицирования не было, в том числе в этой группе пациентов, погибших в более отсроченные сроки от осложнений COVID-19, также не было.

Заключение. Полученные результаты данного пилотного исследования продемонстрировали благоприятный профиль токсичности для пациентов с заболеваниями системы крови. Отсутствие летальности в данном исследовании среди пациентов онкогематологического профиля по причине COVID-19 демонстрирует возможную пользу применения MAT к S-белку SARS-CoV-2 в данной когорте пациентов, но это требует дальнейших проспективных многоцентровых исследований.

Таблица. Характеристика пациентов, включенных в исследование

Параметр	Группа профилактики (n=68)	Группа терапии (n=27)	Вся группа (n=95)	
Возраст	50 (23-82 года)	51 (23-69 лет)	50 (23-82)	
Пол м/ж	35(51%)/33(49%)	17(63%)/10(37%)	52(55%)/43(45%)	
Наличие				
тяжелого	25 (37%)	5(19%)	30(32%)	
сердечно-				
сосудистого				
заболевания				
Основной				
диагноз:				
ОЛЛ	7 (10%)	4 (15%)	11 (12%)	
ОМЛ	7 (10%)	6 (22%)	13 (14%)	
ОПЛ	1 (1,5%)	1 (4%)	2 (2%)	
После алло-	6 (9%)	2 (8%)	8 (8%)	
ТГСК или				
CAR-T	22 (32%)	2 (8%)	24 (25%)	
MM	6 (9%)	0	6 (6%)	
вкл+хлл	4 (6%)	0	4 (4%)	
ЛХ	10 (15%)	3 (11%)	13 (14%)	
Неходжкинские				
лимфомы	0	1 (4%)	1 (1%)	
ПНГ	0	1 (4%)	1 (1%)	
хмпз	5 (7%)	7 (26%)	12 (13%)	
гемофилия				

Гришина Е.Ю., Желнова Е.И., Иксанова А.Р.

ПРОФИЛАКТИКА COVID-19 У ПАЦИЕНТОВ С ГЕМОБЛАСТОЗАМИ. СОБСТВЕННЫЙ КЛИНИЧЕСКИЙ ОПЫТ ГБУЗ «ГКБ №52 ДЗМ»

ГБУЗ «ГКБ №52 ДЗМ», г. Москва

Введение. С начала 2020 г. российское медицинское сообщество столкнулось с пандемией COVID-19. В группе повышенного риска оказались пациенты с онкогематологическими заболеваниями. Несмотря на регресс пандемии с 2022 г., пациенты с гемобластозами, которым необходимо проведение системной химиотерапии, трансплантации костного мозга, все еще находятся в зоне риска тяжелого течения коронавирусной инфекции. В связи с этим на первый план выходит разработка протокола адекватных профилактических мероприятий.

Цель. Разработка протокола эффективной профилактики COVID-19 у пациентов на высокодозных курсах химиотерапии и ауто-ТСКК.

Материалы и методы. Проанализирована тактика профилактики COVID-19 ведущих европейских и американских гематологических центров. Согласно рекомендациям Европейской конференции по инфекциям у пациентов с лейкозами (ECIL) рекомендуется доконтактная профилактика с помощью моноклональных антител

(в настоящее время тиксагевимаб + цилгавимаб «Эвушелд») у пациентов с умеренным или тяжелым иммунодефицитом, независимо от прививочного статуса. Несмотря низкую или очень низкую ожидаемую частоту ответа на вакцину (антиСD20 терапия; тяжелая гипогаммаглобулинемия (<4 г/л), тяжелая лимфопения <500/мкл, перед началом индукционной химиотерапии ОЛ), рекомендовано вакцинироваться. В США также в качестве возможного метода профилактики использовались моноклональные антитела: тиксагевимаб + цилгавимаб, касиривимаб-имдевимаб «Ронаприв» и бамланивимаб-этесевимаб. В России в настоящее время для профилактики COVID-19 доступны следующие опции: вакцинация, тиксагевимаб + цилгавимаб, КОВИД-глобулин. Вакцинация — широкодоступный метод профилактики, однако в связи с низкой частотой сероконверсии у онкогематологических больных его нельзя считать достаточно эффективным. В связи с этим в ГКБ №52 разработан собственный протокол многокомпонентной профилактики коронавирусной инфекции у пациентов, которым предстоит аутологичная трансплантация костного мозга. Необходимым условием для проведения ауто-Т-СКК является предварительная вакцинация пациентов в качестве первой линии защиты. За 10–14 дней до госпитализации пациентам вводится тиксагевимаб + цилгавимаб. После проведения ВДХТ с ауто-ТСКК, после наступления миелотоксической аплазии кроветворения 1 раз в неделю вводится КОВИД-глобулин.

Результаты. Проанализировано 228 пациентов, которым с марта 2022 г. проводились ауто-ТСКК (68 пациентов) и высокодозные курсы химиотерапии. Пациенты разделены на 3 группы. В 1-й группе профилактика проводилась только Эвушелдом (не заболели 50%, ПЦР+ 27%, COVID-19 23%), во 2-й группе — КОВИД-глобулином (не заболели 50%, ПЦР+ 37%, COVID-19 15%), в 3-й группе — комбинация Эвушелда с КОВИД-глобулином (не заболели 81%, ПЦР+ 14%, COVID-19 5%).

Заключение. Пандемия COVID-19 внесла свои коррективы в лечение онкогематологических пациентов. Однако, несмотря на риски тяжелого течения у такой когорты пациентов, мы не должны отказываться от проведения высокодозных курсов химиотерапии. К 2023 году существует несколько терапевтических опций профилактики этой вирусной инфекции. В России доступны 3 варианта профилактики — вакцинация, моноклональные антитела, КОВИД-глобулин. Четко прописанных рекомендаций насчет режима и сроков дозирования мАТ и КОВИД-глобулина на сегодня нет, однако сочетание вакцинации, терапии мАТ и КОВИД-глобулина по собственному опыту ГКБ №52 показало большую эффективность по сравнению с монотерапией.

Кожушная О.С., Солопова Г.Г.

ДИАГНОСТИКА МУТАЦИЙ РЕЗИСТЕНТНОСТИ ЦИТОМЕГАЛОВИРУСА К ПРОТИВОВИРУСНЫМ ПРЕПАРАТАМ У ИММУНОКОМПРОМЕТИРОВАННЫХ ДЕТЕЙ

ФГБУ «НМИЦ ДГОИ имени Дмитрия Рогачева» Минздрава России, г. Москва

Введение. Цитомегаловирусная инфекция (ЦМВ) является частым осложнением у иммунокомпрометированных пациентов, в первую очередь реципиентов аллогенной трансплантации гемопоэтических стволовых клеток (ТГСК). Препаратами профилактики/первой линии терапии ЦМВ являются ганцикловир (ГЦВ) и его L-валиловый эфир — валганцикловир, препаратами второй линии — фоскарнет (ФОС), сидофовир (СИД). Однако существенной проблемой в лечении ЦМВ является развитие лекарственной устойчивости вируса вследствие естественного мутационного процесса или длительно предшествующей противовирусной терапии.

Цель. Диагностика мутаций резистентности ЦМВ у пациентов с доказанной ЦМВ-инфекцией.

Материалы и методы. В исследование были включены реципиенты ТГСК с доказанной ЦМВ-инфекцией, у которых, несмотря на проводимую не менее 14 дней противовирусную терапию, наблюдался рост либо повторное увеличение вирусной нагрузки. Материалом для исследования служила кровь, реже — внутриглазная и бронхоальвеолярная жидкость. На фоне терапии ГЦВ проводили определение мутаций в гене фосфотрансферазы *UL97*, при терапии ФОС и СИД — в гене ДНК-полимеразы ЦМВ *UL54*. Выделение ДНК ЦМВ из биологического материала проводили с использованием набора «Магно-сорб» (ЦНИИ эпидемиологии), определение вирусной нагрузки — «АмплиСенс EBV/CMV/HHV6-скрин-FL» (ФБУН «ЦНИИ эпидемиологии Роспотребнадзора», Россия), в соответствии с инструкцией производителя. Поиск мутаций в генах UL97 и UL54 ЦМВ проводили методом секвенирования по Сэнгеру, полученные последовательности сопоставляли с референсной последовательностью штамма Merlin на платформе MRA Ульмского университета (Германия).

Результаты. За период 2020—2022 гг. у 107 пациентов были определены показания к проведению мониторинга мутаций резистентности ЦМВ к противовирусным препаратам. При анализе полученных результатов у 24 (22%) пациентов были выявлены значимые мутации резистентности гена UL97: A594V (n=10), L595S (n=3), H520Q (n=3), C592G (n=2), C607Y (n=2), C607F (n=1), C603W (n=1), M460V (n=1), M615V (n=1), и у трех пациентов — мутации гена UL54: N408D + V715H (n=1), V715H (n=1), V781I (n=1).

Заключение. Проведение генотипического анализа ЦМВ является очень актуальным с целью своевременного обнаружения мутаций, приводящих к резистентности ЦМВ, и, соответственно, подбора эффективной противовирусной терапии. Исследования показали, что у данной когорты пациентов развитие лекарственной устойчивости наиболее часто ассоциировано с мутациями гена UL97 ЦМВ и реже — гена ДНК-полимеразы *UL54*. В связи с высокой частотой выявления мутаций резистентности ЦМВ, в первую очередь у реципиентов ТГСК с подтвержденной ЦМВ-инфекцией, крайне актуальным является внедрение алгоритма по мониторингу резистентности. Снижение вирусной нагрузки ЦМВ и выздоровление пациентов возможно только при своевременной модификации терапии — увеличении доз либо назначении противовирусных препаратов второй линии, при этом выбор стратегии зависит от типа выявленных мутаций ЦМВ. В связи со случаями повторного обнаружения мутаций на фоне возобновления терапии противовирусными препаратами существует вероятность, что полной элиминации мутантных типов ЦМВ не происходит. Это требует повторного изучения и сопоставления данных мониторинга вирусной нагрузки ЦМВ-пациентов, типов мутаций и проводимой противовирусной терапии.

Кочнева О.Л., Барях Е.А., Мисюрина Е.Н., Желнова Е.И., Яцков К.В., Поляков Ю.Ю., Чуднова Т.С., Иванова Д.Д., Толстых Т.Н., Самсонова И.В., Лысенко М.А.

ОСОБЕННОСТИ ТЕЧЕНИЯ COVID-19 У ПАЦИЕНТОВ С В-ХЛЛ

ГБУЗ «Городская клиническая больница №52» ДЗ г. Москвы, г. Москва

Введение. Пациенты с хроническим лимфолейкозом (В-ХЛЛ) по мере прогрессирования заболевания и увеличения опухолевой нагрузки, характеризуются высокой восприимчивостью и тяжелым течением вирусных инфекций. На глубину иммунной дисфункции могут оказывать влияние такие факторы, как возраст, коморбидность, статус заболевания и предшествующее лечение. Выявление SARS-CoV-2

в данной когорте пациентов позволило проанализировать течение COVID-19, а также выработать стратегию ведения этих больных.

Цель. Оценить факторы риска тяжелого течения COVID-19, а также выявить предикторы госпитальной летальности.

Материалы и методы. С 21.04.2020 по 31.12.2022 г. в ГБУЗ ГКБ № 52 ДЗМ проходили стационарное лечение 232 пациента

с верифицированным В-ХЛЛ и COVID-19. Оценены антропометрические, анамнестические, клинико-лабораторные данные, проанализирована лечебная тактика как В-ХЛЛ, так и COVID-19 у 233 пациентов (93 женщины и 139 мужчин, медиана возраста — 66 лет). Проведен статистический анализ госпитальной летальности, факторов неблагоприятного прогноза течения COVID-19 (осложнения, гуморальный ответ, госпитальная летальность). Проведен анализ гуморального ответа у пациентов, проходивших стационарное лечение в 2021-2022 гг.

Результаты. Возраст являлся значимым неблагоприятным фактором у мужчин: возраст мужчины 73 года и более повышает риск смерти пациента в 3,0 раза (ρ <0,05). У женщин возраст не являлся значимым неблагоприятным фактором. Оценка влияния коморбидности: пациенты с 6 и более баллами коморбидности по Charlson имеют в 2,2 раза больший риск смерти; наличие сердечно-сосудистых заболеваний повышает риск смерти пациента в 2,3 раза. Наличие в анамнезе 1 и более линий ИХТ в 1,5 раза увеличивала риск госпитальной летальности. Пациенты, ранее прошедшие курс химиотерапии, находились на лечение до момента выписки статистически значимо дольше пациентов, не проходивших противоопухолевую терапию. Рецидив/прогрессия заболевания являлись фактором

неблагоприятного прогноза в отношении выживаемости пациентов В-ХЛЛ (летальность составила 47% в сравнении с 14,7% у больных в ремиссии). Значимым неблагоприятным прогнозом также является стадия С по Binnet (p<0,05). Достоверным фактором неблагоприятного исхода COVID-19 (p<0,05) была терапия в условиях ОРИТ и развитие вторичных бактериальных осложнений (применение антибактериальной терапии 2-й линии). Отсутствие гуморального ответа являлось статистически значимым фактором неблагоприятного исхода у 25% пациентов (p<0,05).

Заключение. Прогрессия/рецидив хронического лимфолейкоза является фактором тяжелого течения COVID-19 и, как следствие, повышает риск госпитальной летальности. Отсутствие гуморального ответа определяет персистирующее течение COVID-19 и на 25% увеличивает риск летального исхода. Изучение особенностей течения COVID-19 у пациентов с В-ХЛЛ позволяет выявить ключевые аспекты, влияющие на выбор тактики ведения данной категории больных: проведение дополнительной бустерной вакцинации (стимуляция гуморального ответа), раннее выявление (скрининг) SARS-CoV-2 для проведения терапии вируснейтрализующими антителами, своевременная госпитализация больных.

Крылова А.Ю., Тихомиров Д.С., Солдатова Т.А., Мисько О.Н., Старкова О.Г., Туполева Т.А.

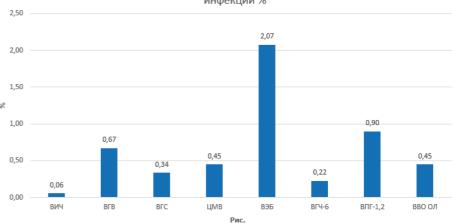
ЛАБОРАТОРНЫЕ МАРКЕРЫ ОСТРОЙ ФАЗЫ ВИРУСНЫХ ИНФЕКЦИЙ У ПОТЕНЦИАЛЬНЫХ ДОНОРОВ КОСТНОГО МОЗГА И ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК

ФГБУ «Национальный медицинский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Обследование доноров органов и тканей включает определение маркеров гемотрансмиссивных инфекций согласно нормативной документации. Для доноров костного мозга и гемопоэтических стволовых клеток (ДКМ) непосредственно перед заготовкой трансплантата предусмотрено дополнительное тестирование и на другие инфекции, например вызываемые представителями семейства Herpewiridae.

Цель. Определить частоту выявления вирусных маркеров, характеризующих острую фазу той или иной инфекции у потенциальных Π KM.


Материалы и методы. В период с апреля 2015 по декабрь 2022 г. 1784 потенциальных ДКМ были обследованы на лабораторные маркеры острой фазы гемотрансмиссивных и герпесвирусных инфекций. Среди гемотрансмиссивных проводили исследование на маркеры вируса иммунодефицита человека (ВИЧ), вируса гепатита В (ВГВ) и С (ВГС). Для герпесвирусов проводили тестирование на маркеры цитомегаловируса (ЦМВ), вируса Эпштейна — Барр (ВЭБ), вируса герпеса человека 6-го типа (ВГЧ-6), вируса простого герпеса 1-го


и 2-го типов (ВПГ-1, -2) и вируса ветряной оспы и опоясывающего лишая (ВВО ОЛ). Для ВИЧ, ВГВ, ЦМВ и ВЭБ определяли серологические и молекулярные маркеры, в то время как для ВГС и ВГЧ-6 — только молекулярные, а для ВПГ-1, -2 и ВВО ОЛ — только серологические. Все исследования проводились с помощью коммерческих наборов реагентов.

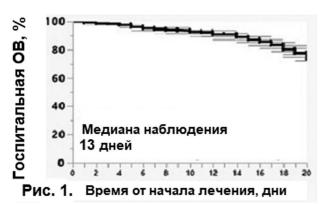
Результаты. Частоты обнаружения маркеров острой фазы различных вирусных инфекций представлены на рис. Среди гемотрансмиссивных инфекций чаще выявлялись маркеры острого вирусного гепатита В в различных сочетаниях — поверхностный антиген вируса, IgM к ядерному антигену и вирусная ДНК. Они были обнаружены у 12 (0,67%) доноров. Реже встречались маркеры острого вирусного гепатита С (РНК) — у 6 (0,34%) ДКМ. Активная ВИЧ-инфекция (антиген/антитела и РНК) была выявлена только у 1 (0,06%) донора. Антитела острой фазы ЦМВ-инфекции (IgM к ЦМВ) обнаружены у 8 (0,45%) ДКМ, при этом ДНК возбудителя не была выявлена ни в одном случае. Маркеры активной ВЭБ-инфекции являются самыми

распространенными среди герпесвирусов, и в различных сочетаниях были детектированы у 37 (2,07%) доноров: ДНК — у 4 (0,22%), IgM к вирусному капсидному антигену — у 12 (0,89%), и IgG к раннему антигену — у 23 (1,28%). Антитела острой фазы инфекции, вызванной ВПГ-1, -2, были выявлены у 16 (0,90%) доноров. Антитела к гликопротеину Е ВВО ОЛ (IgM и/или IgG-gE) обнаружены у 8 (0,45%) ДКМ. Реже всего среди активных герпесвирусных инфекций были детектированы маркеры ВГЧ-6 (ДНК) — у 4 (0,22%) доноров. При этом в одном случае была заподозрена и доказана наследуемая хромосомно-интегрированная форма ВГЧ-6.

Заключение. Выявление лабораторных маркеров острой фазы вирусной инфекции у потенциальных доноров костного мозга и гемопоэтических стволовых клеток в изучаемый период времени было редким событием. Среди гемотрансмиссивных инфекций чаще встречались маркеры острого вирусного гепатита В (0,67%), а среди герпесвирусов — маркеры активной Эпштейна — Барр-вирусной инфекции или инфекции, вызванной вирусом простого герпеса 1-го и 2-го типов (2,07 и 0,90%, соответственно).

ВИЧ — вирус иммунодефицита человека; ВГВ — вирус гепатита В; ВГС — вирус гепатита С; ЦМВ — цитомегаловирус; ВЭБ — вирус Эпштейна-Барр; ВГЧ-6 — вирус герпеса человека 6 типа; ВПГ-1,2 — вирус простого герпеса 1 и 2 типов; ВВО ОЛ — вирус ветряной оспы и опоясывающего лишая Поляков Ю.Ю.^{1,4}, Барях Е.А.^{1,2,3}, Мисюрина Е.Н.¹, Андреев С.С.¹, Гемджян Э.Г.⁵, Желнова Е.И.¹, Яцков К.В.¹, Кочнева О.Л.¹, Чуднова Т.С.^{1,4}, Иванова Д.Д.¹, Толстых Т.Н.¹, Лысенко М.А.^{1,2}

ФАКТОРЫ ВНУТРИГОСПИТАЛЬНОЙ ЛЕТАЛЬНОСТИ БОЛЬНЫХ С ЛИМФОПРОЛИФЕРАТИВНЫМИ ЗАБОЛЕВАНИЯМИ И КОРОНАВИРУСНОЙ ИНФЕКЦИЕЙ


¹ГБУЗ «Городская клиническая больница № 52 Департамента здравоохранения г. Москвы», г. Москва, ²ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва, ³ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, г. Москва, ⁴Медико-биологический университет инноваций и непрерывного образования ФГБУ «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр им. А.И. Бурназяна», г. Москва, ⁵ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Инфицирование коронавирусной инфекцией (COVID-19) повышает риск летальных исходов госпитализированных пациентов с лимфопролиферативными заболеваниями (ЛПЗ).

Цель. Нахождение клинико-параклинических факторов, ассоциированных с внутригоспитальной общей выживаемостью (ОВ) больных ЛПЗ с присоединившейся инфекцией COVID-19.

Материалы и методы. Проспективное исследование проведено с апреля 2020 по декабрь 2021 г. на базе гематологической службы городской клинической больницы №52 (г. Москва, Российская Федерация), где наблюдались 335 пациентов (53% мужчин и 47% женщин) в возрасте от 18 до 92 лет (медиана 65) с ЛПЗ и СОVID-19. Выявлены (с использованием Кокс-регрессионного анализа) факторы внутригоспитальной ОВ. Пороговый уровень статистической значимости считали равным 0,05.

Результаты. Нозологии пациентов: диффузная В-крупноклеточная лимфома, фолликулярная лимфома, первичная медиастинальная В-крупноклеточная лимфома, лимфома из клеток мантийной зоны, лимфома из клеток маргинальной зоны, волосатоклеточный лейкоз, лимфома Ходжкина, лимфома Беркитта и Т-клеточная лимфома. Средний индекс коморбидности Charlson — 5 баллов, медиана времени от первых симптомов до госпитализации — 7 суток. Статус гематологического заболевания: ремиссия у 43% пациентов, рецидив/ прогрессия — 23%, стабилизация — 29%, впервые выявленный гемобластоз — 5%. У 67% пациентов имелась среднетяжелая и тяжелая степень поражения легочной ткани. Преобладал высокий уровень С-реактивного белка (медиана 115 мг/л), повышение уровня D-димера (медиана 912 нг/мл) и фибриногена (медиана 6,5 г/л). Нейтропения 4-й степени у 150 пациентов. Сепсис диагностирован у 83 пациентов из 335, у 52 (15,5%) с летальным исходом. Полихимиотерапия ЛПЗ в течение предшествующего месяца до манифестации COVID-19

у 182 пациентов. Анти-СD20 моноклональные антитела в течение года до COVID-19 у 209 пациента. Госпитализация в ОРИТ: 84 (25%) пациента из 335, у 54 (66%) из них был диагностирован сепсис, средний койко-день в ОРИТ — 9 суток, 69 (21%) из 335 пациентов требовалась инвазивная искусственная вентиляция легких (ИВЛ). Доля летальных исходов в группе с ЛПЗ + COVID-19 составила 21%. Проводилось культуральное исследование крови до начала антибактериальной терапии. Наиболее распространенные патогены, выделенные из гемокультуры, — K. pneumoniae (27,3%), E. faecium (15,3%), E. coli (14,8%), P. aeruginosa (13,6%), A. baumannii (11,4%), Candida spp. (5,7%). Отмечена высокая частота инфекций, обусловленных экстремально резистентными и панрезистентными возбудителями, в том числе карбапенемрезистентными Enterobacterales (в том числе продуцентами карбапенемазы OXA-48-like и металлобеталактамазы NDM), A. baumannii (с доказанной продукцией ОХА-23-like, ОХА 40like, OXA-51-like карбапенемаз), E. faecium, резистентного к ванкомицину и Сапдіда ашіз.

Заключение. Внутригоспитальная ОВ взрослых больных ЛПЗ и COVID-19 за период госпитализации (медиана 13 дней) составила 80% (рис. 1). Выявлены прогностически неблагоприятные факторы, ассоциированные с внутригоспитальной ОВ: 1) возраст старше 65 лет, отношение рисков (ОР): 2,0 (95% ДИ: 1,1–5,2), ρ =0,05; 2) статус гематологического заболевания: рецидив/прогрессия, ОР (по отношению к ремиссии): 2,4 (1,3–4,3), ρ =0,008; 3) 4-я степень поражения по компьютерной томографии органов грудной клетки, ОР (по отношению к отсутствию поражения): 2,9 (1,–7,1), ρ =0,004 и наличие нейтропении 4-й степени, 1,5 (0,9–2,7), ρ =0,09 (рис. 2). Верификация инфекционного агента и ранняя этиотропная антибактериальная терапия повышают шансы на благоприятный исход заболевания.

Новикова Д.В., Кохно А.В., Моисеева Т.Н., Аль-Ради Л.С., Судариков А.Б., Двирнык В.Н., Ковригина А.М., Обухова Т.Н., Паровичникова Е.Н.

«МАСКИ» ПАРВОВИРУСНОЙ ИНФЕКЦИИ В ГЕМАТОЛОГИИ

ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Парвовирусная инфекция (ПВИ) широко распространена во всем мире, к 60 годам уже более 80% населения имеет иммунитет (IgG антитела). У здоровых лиц ПВИ протекает бессимптомно либо в легкой форме и излечивается самостоятельно. Однако у иммунокомпрометированных пациентов парвовирус В19 (PVВ19) вызывает такие серьезные осложнения, как аплазия эритроидного ростка костного мозга (КМ).

Цель. Показать особенности диагностики и лечения ПВИ.

Материалы и методы. Обследованы 2 пациента с направительным диагнозом миелодиспластический синдром (МДС).

Результаты. Пациентка № 1 К., ж, 35 лет. В 2020 г. перенесла ПХТ по программе BEACOPP-еsc № 5 по поводу лимфомы Ходжкина (ЛХ), NS I типа, IV В стадии, достигнута полная ПЭТ-негативная ремиссия. В период проведения ПХТ и при дальнейшем наблюдении в ремиссии отмечена стойкая анемия Hb<70 г/л с зависимостью от трансфузий эритроцитсодержащих компонентов донорской

крови (ЭСКДК). В 07.2020 г. перенесла COVID-19. В 2021 г. по м/ж дважды проводилась трепанобиопсия КМ: поражения при ЛХ не выявлено. Анемия была расценена как симптом МДС, планировалась алло-ТГСК от родной сестры. В 05.2021 г. пациентка обследована в ФГБУ «НМИЦ гематологии» Минздрава России: выявлена нормохромная нормоцитарная анемия (Нь — 84 г/л после трансфузии ЭСКДК по месту жительства), снижение ретикулоцитов (Rt) в крови до 7.7×10^9 /л (норма $(20-100) \times 10^9$ /л), редукции эритроидного ростка в КМ до 4%. Выявлена ДНК PVB19 (кровь, КМ). Установлен диагноз: парциальная красноклеточная аплазия (ПККА), ассоциированная с PVB19. Начата терапия внутривенными иммуноглобулинами (ВВИГ), суммарно введено 70 гр. Количество копий ДНК PVB19 снизилось с $1,2\times10^6$ до $8,2\times10^4$ /мл, а показатели Hb и Rt повысились с 85 до 127 г/л и с 7 до 212×10^9 /л, соответственно. В 07.2021 г. пациентка вновь перенесла COVID-19. Терапия ВВИГ была продолжена: суммарно введено еще 65 гр. При контроле в 02.2023 г.: Hb = 125 г/л, Эр. $= 4.0 \times 10^{12}$ /л, Rt $= 81 \times 10^{9}$ /л, ДНК PVB19 $= 5 \times 10^{3}$ /л, количество $CD4^+$ клеток и содержание $И\Gamma$ в норме. Продолжено наблюдение без терапии. Пациент № 2 А., м, 22 лет. В 04.2021 г. впервые выявлено снижение Нв до 54 г/л, выполнена однократная трансфузия ЭСКДК. В 09.21 г. – туберкулез легких. Специфическая терапия до 09.22 г. В 09.22 г. вновь снижение Нь до 50 г/л, появление зависимости от трансфузий ЭСКДК. Обследован в ФГБУ «НМИЦ гематологии» Минздрава России в $11.22~\rm r.:~Hb-48~r/л$, эритрокариоциты в КМ — 0,2%. По данным трепанобиопсии КМ, СЦИ, диагноз МДС, ЛПЗ не подтвержден. ДНК PVB19 выявлена только в КМ, однако в крови определены антитела анти-B19-IgМ — 5,45 МЕ/мл (норма <0,8 МЕ/мл), анти-B19-IgG — 3,07 МЕ/мл (норма <4 МЕ/мл). Установлен диагноз: ПККА, ассоциированная с PVB19. Начата терапия ВВИГ, суммарно введено 30 гр, достигнут прирост Hb до $127~\rm r/n$ и ЭКЦ до 49%.

Заключение. Представленные клинические случаи развития ПККА у иммунокомпрометированных больных демонстрируют необходимость комплексного обследования для выявления причины анемии. Редукция эритроидного ростка в КМ в сочетании с анемией и ретикулоцитопенией требует обязательного исследования КМ на наличие ДНК РVВ19, т.к. отсутствие репликации в крови не исключает его наличия в КМ. Диагностика ПВИ должна включать исследование крови на наличие антител к PVВ19. Унифицированного протокола лечения ПККА, ассоциированной с PVВ19, на сегодня нет. Доза и кратность введения ВВИГ определяется в каждом конкретном случае и зависит от иммунологического статуса пациента и наличия репликации PVВ19 в крови. ВВИГ эффективен при лечении ПККА, ассоциированной с PVВ19.

Пластинина Л.В.¹, Аль-Ради Л.С.¹, Моисеева Т.Н.¹, Костина И.Э.¹, Чабаева Ю.А.¹, Барях Е.А.², Желнова Е.И.², Туполева Т.А.¹

СТАЦИОНАРНОЕ ЛЕЧЕНИЕ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ COVID-19 У ПАЦИЕНТОВ С ВОЛОСАТОКЛЕТОЧНЫМ ЛЕЙКОЗОМ

¹ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва, ²ГБУЗ «ГКБ №52 ДЗМ», г. Москва

Введение. Новая коронавирусная инфекция у пациентов с онкологематологическими заболеваниями часто протекает в тяжелой форме. Развитие тяжелых и опасных для жизни инфекций является одной из наиболее признанных и важных клинических проблем у пациентов с волосатоклеточным лейкозом (ВКЛ).

Цель. Оценить тяжесть течения новой коронавирусной инфекции COVID-19, требующей стационарного лечения, у пациентов с ВКЛ.

Материалы и методы. Проведен ретроспективный анализ данных 49 пациентов с ВКЛ, наблюдающихся в ФГБУ «НМИЦ гематологии» Минздрава России, которые заболели COVID-19 с мая 2020 по октябрь 2021 года и в этой связи находились на стационарном лечении в различных медицинских организациях Российской Федерации. Возраст больных на момент диагностики COVID-19 составил от 36 до 82 лет (медиана 54 года). Диагноз ВКЛ устанавливался на основании стандартных лабораторно-инструментальных исследований, включая иммунофенотипирование, определение мутации BRAFV600E. Диагноз COVID-19 подтвержден наличием РНК SARS-CoV-2 методом ПЦР у 42 пациентов, выявлением после перенесенной инфекции антител IgM и/или IgG к SARS-CoV-2 в крови методом ИФА у 5 пациентов. У двух пациентов диагноз COVID-19 установлен только на основании характерной для вирусной пневмонии КТ-картины.

Результаты. Тяжелая степень поражения легких по КТ (КТ 3-4) диагностирована у 45% (n=22) пациентов, у 18% (n=9) пациентов развилась дыхательная недостаточность 3–4 ст. Абсолютная нейтропения ($<1,0\times10^9/n$) в период диагностики COVID-19 выявлена у 24% (n=12) пациентов. Вирусная пневмония при ВКЛ часто сочеталась с бактериальной и оппортунистической флорой. Во время выявления COVID-19 ремиссия ВКЛ была у 57% (n=28) пациентов, у 43% (n=21) больных COVID-19 была диагностирована в развернутой фазе ВКЛ (35% (n=17) дебют; 8% (n=4) рецидив), из них в развернутой

фазе ВКЛ до начала специфического лечения ВКЛ у 29% (n=14) пациентов, у 14% (n=7) — в период проведения специфического лечения интерфероном-альфа/вемурафенибом/кладрибином. Тяжелое поражение легких по КТ (КТ 3-4) чаще (64%) наблюдалось у больных без специфического лечения в развернутой фазе ВКЛ (против 42% у пациентов, получавших специфическое лечение; и 36% у пациентов в ремиссии ВКЛ) (таблица). Лечение пациентов включало антибактериальные препараты у 98% пациентов, глюкокортикостероиды у 76%, антицитотоксические препараты у 43% пациентов, терапия гидроксихлорохином у 16% пациентов, терапия плазмой реконвалесцентов СОVID-19 у 10% пациентов. В кислородной поддержке нуждались 67% (n=33) пациентов; ИВЛ и терапия вазопрессорами проводились 6 пациентам (без эффекта). Летальность составила 12% (четверо пациентов умерло в развернутой фазе ВКЛ, двое — в ремиссии ВКЛ).

Заключение. Тяжелое течение COVID-19 среди госпитализированных пациентов чаще встречалось у пациентов в развернутой фазе ВКЛ, которым не проводилось специфического лечения, по сравнению с пациентами, получавшими специфическое лечение и в ремиссии ВКЛ.

Таблица. Характеристика течения новой коронавирусной инфекции COVID-19, требующей стационарного лечения, у пациентов с волосатоклеточным лейкозом (*n*=49)

	Развернута	Ремиссия ВКЛ,	
Признак	До начала терапии ВКЛ, n (%)	В период терапии ВКЛ, n (%)	n (%)
Количество пациентов	14 (29%)	7 (14%)	28 (57%)
Поражение легких КТ 3-4	9 (64%)	3 (42%)	10 (36%)
ДН 3-4	4 (28%)	3 (43%)	2 (7%)
Абсолютная нейтропения (<1,0×10°/л)	8 (57%)	3 (43%)	1 (3%)

ВКЛ — волосатоклеточный лейкоз, ДН — дыхательная недостаточность, КТ — компьютерная томография

Старкова О.Г., Тихомиров Д.С., Овчинникова Е.Н., Шайдурова К.В., Шишканов Д.В., Туполева Т.А., Гапонова Т.В.

СОХРАННОСТЬ АНТИТЕЛ К SARS-COV-2 В ТЕЧЕНИЕ ПЕРИОДА КАРАНТИНИЗАЦИИ ДОНОРСКОЙ ПЛАЗМЫ И ЧАСТОТА НЕЖЕЛАТЕЛЬНЫХ ЯВЛЕНИЙ У РЕЦИПИЕНТОВ ПЛАЗМОСОДЕРЖАЩИХ ПРОДУКТОВ, ЗАГОТОВЛЕННЫХ ОТ СЕРОПОЗИТИВНЫХ ПО SARS-COV-2 ДОНОРОВ

ФГБУ «Национальный медицинский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Плазмосодержащие компоненты донорской крови могут стать причиной нежелательных реакций при переливании. Частота иммунизации доноров против возбудителя COVID-19 как в результате перенесенной инфекции, так и в результате вакцинации в настоящее время приближается к 100%. С начала декабря 2021 г. доля серонегативных по SARS-CoV-2 доноров была менее 12%.

Цель. Оценить сохранность SARS-CoV-2 IgG в течение срока карантинизации донорской плазмы и оценить частоту нежелательных явлений при переливании компонентов крови, заготовленных от доноров, имеющих антитела к SARS-CoV-2.

Материалы и методы. Для оценки сохранности IgG к SARS-CoV-2 в исследование были включены 505 образцов позитивной плазмы, заготовленной в отделении переливания крови НМИЦ

100 90 80 70 Количество образцов 60 50 40 30 20 10 0 1,5 med 2 мес 3 мес 4 мес 5 мес 6 мес ■Образцы, утратившие AT 0 3 1 2 2 2 ■ Всего образцов 45 92 92 92 92 92

Длительность заморозки

Рис. Сохранность SARS-CoV-2 IgG при глубокой заморозке заготовленной плазмы в течении стандартного периода карантинизации

Таблица. Доля нежелательных посттрансфузионных реакций у пациентов после клинического использования СЗП, КСН и КП заготовленных от серопозитивных серонегативных по COVID-19 доноров.

	Реакции после трансфузии (случаи)	Количество трансфузий, после которых оценивалось наличие реакций (%)					
N		СЗП		КСН		КП	
		серопозитивные доноры	серонегативные доноры	серопозитивные доноры	серонегативные доноры	серопозитивные доноры	серонегативные доноры
1	Подъём температуры тела до субфебрильных значений	125 (18%)	279 (21%)	28 (23%)	47 (23%)	206 (11%)	622 (13%)
2	Подъём температуры тела выше 38°C	77 (11%)	124 (9%)	13 (10%)	17 (8%)	79 (4%)	208 (4%)
3	Отсутствие нежелательных реакций	503 (71%)	951 (70%)	83 (67%)	139 (69%)	1546 (85%)	4105 (83%)
4	ВСЕГО	705 (100%)	1354 (100%)	124 (100%)	203 (100%)	1831 (100%)	4105 (100%)
	Критерий достоверности различий	χ2 = 3.512	2, p=0.173	χ2 = 0.412	l, p=0.815	χ2 = 2.281	., p=0.320

гематологии с 29.04.2020 по 08.04.2021 г. Карантинизация осуществлялась при температуре ниже –25 °C в течение не менее 120 суток со дня заготовки. Исследование на наличие антител к SARS-CoV-2 проводили в момент заготовки образца плазмы и спустя 1,5, 2, 3, 4, 5, 6 мес. глубокой заморозки. Использовали набор реагентов «SARS-CoV-2-IgG-ИФА» производства ФГБУ «НМИЦ гематологии» Минздрава России. Для сравнения частоты возникновения нежелательных явлений были проанализированы 9152 трансфузии плазмосодержащих компонентов, заготовленных от доноров, в крови которых были обнаружены или не обнаружены антитела к возбудителю COVID-19. Оценка нежелательных реакций осуществлялась после каждой трансфузии. В анализ было включено 2059 трансфузий свежезамороженной плазмы (СЗП), 327 трансфузий криосуперна-

тантной плазмы (КСН) и 6766 доз криопреципитата (КП). Оценивалось возникновение нежелательных реакций (подъём температуры тела до субфебрильных значений и выше) в течение 2–3 часов после трансфузии компонента.

Результаты. Было показано, что лишь 10 (2%) образцов плазмы, заготовленной от серопозитивных доноров, после разморозки оказались негативными по содержанию SARS-CoV-2 IgG. На рисунке показано отсутствие связи между потерей антител и сроком глубокой заморозки, следовательно, потеря антител может быть обусловлена возможными артефактами и погрешностями при проведении исследований. Сохранность антител в плазме после разморозки не зависела от исходного уровня IgG SARS-CoV-2, измеренного в крови донора в момент заготовки компонента. Для оценки частоты посттрансфузионных реакций у реципиентов были проанализированы 9152 трансфузии плазмосодержащих компонентов. Наличие антител к SARS-CoV-2 было доказано в 2660 (29%) образцах крови доноров, соответствующих перелитым компонентам. Анализ нежелательных реакций после трансфузий СЗП, КСН и КП, заготовленных от серопозитивных и серонегативных доноров, показал отсутствие достоверных различий в частоте возникновения нежелательных реакций у реципиентов. Данные представлены в таблице.

Заключение. Глубокая заморозка, применяемая при карантинизации донорской плазмы, не приводит к потере антител SARS-CoV-2 в течение всего срока карантинизации. Не обнаружено достоверных различий в частоте посттрансфузионных реакций при применении плазмосодержащих компонентов, полученных от доноров, в крови которых были выявлены или не выявлены антитела к SARS-CoV-2.

Солдатова Т.А., Тихомиров Д.С., Крылова А.Ю., Мисько О.Н., Старкова О.Г., Туполева Т.А.

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ДИАГНОСТИКИ АКТИВНОЙ ИНФЕКЦИИ, АССОЦИИРОВАННОЙ С ВИРУСОМ ГЕРПЕСА ЧЕЛОВЕКА 6, У ПАЦИЕНТОВ ГЕМАТОЛОГИЧЕСКОГО ПРОФИЛЯ С НАСЛЕДУЕМОЙ ХРОМОСОМНО-ИНТЕГРИРОВАННОЙ ФОРМОЙ ВИРУСА

ФГБУ «Национальный медицинский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. Вирус герпеса человека $6~(\mathrm{B}\Gamma\mathrm{4-6})$ широко распространен в человеческой популяции. У иммунокомпрометированных больных он может быть причиной лихорадки, сыпи, тромбоцитопении, пневмонии, а также приводить к поражению ЦНС. Вирус способен пожизненно персистировать в организме преимущественно посредством интеграции в теломерные участки хромосом клеток хозяина,

причем интеграция не сайтоспецифична и может произойти в половых клетках. При слиянии гамет, содержащих интегрированный вирус, образуется организм, где каждая клетка несёт копию генома вируса. Эта форма носит название наследуемый хромосомно-интегрированный ВГЧ-6 (нхи-ВГЧ-6). У носителей нхи-ВГЧ-6 будет всегда наблюдаться высокая вирусная нагрузка в любом клиническом

материале с ядросодержащими клетками. При этом у таких индивидуумов была доказана возможная реактивация вируса. Это может приводить к некорректной интерпретации результатов.

Цель. Определить частоту встречаемости наследуемого хи-ВГЧ-6 у пациентов ФГБУ «НМИЦ гематологии» за период с января 2021 по январь 2023 г.

Материалы и методы. В исследование включены результаты ПЦР-исследования на наличие ДНК ВГЧ-6 у 1909 пациентов, получавших терапию в НМИЦ гематологии за указанный период. Для выделения ДНК из клинического материала были использованы: набор реагентов «МагноПрайм ЮНИ» (ООО «НекстБио») и автоматическая станция для выделения нуклеиновых кислот Xiril (Neon 100 series). Для детекции и определения концентрации ДНК методом ПЦР использовались наборы реагентов: «АмплиСенс» «EBV/CMV/ HHV6-скрин-FL» (ООО «ИЛС»), «АмплиПрайм®EBV/CMV/HHV6» (OOO «НекстБио») и кислот амплификатор RotorGene 6000 Q 6 plex. Вирусная нагрузка оценивалась по отношению к концентрации клеточной ДНК, которая, в свою очередь, определялась по наличию сигнала от β-глобинового гена, он относится к генам «домашнего хозяйства» и экспрессируется практически во всех клетках и тканях организма человека. Для подтверждения у пациента нхи-ВГЧ-6 проводилось ПЦР-исследование на наличие вирусной ДНК в образцах волосяных фолликулов и ногтевых пластин (вирус не реплицируется в этих тканях). В случае положительного результата констатировался факт нхи-ВГЧ-6 у пациента.

Результаты. Виремия наблюдалась у значительной части пациентов. Но только у 6 из 1909 (0,3%) пациентов была заподозрена нхи-ВГЧ-6. В течение всего периода наблюдений у них отмечалась высокая вирусная нагрузка в крови и других биологических жидкостях, которая коррелировала с концентрацией клеточной ДНК. Всем пациентам в связи с наличием неспецифических признаков инфекционного осложнения и выявленной виремией проводилась терапия ганцикловиром или валганцикловиром. Трое из них получили трансфузии человеческого иммуноглобулина в течение нескольких месяцев. Однако на фоне проводимого лечения не отмечалось значительного снижения вирусной нагрузки в крови. Исследование ногтевых пластин и волосяных фолликулов подтвердило у них наличие нхи-ВГЧ-6, однако для дифференциальной диагностики между активной инфекцией и носительством необходимо провести дополнительные исследования.

Заключение. Интерпретация результатов ПЦР-исследования у индивидуумов с нхи-ВГЧ-6 вызывает трудности, что требует определенных подходов к их оценке. Необходимость в разработке методов диагностики активной инфекции у таких индивидуумов для своевременного начала специфической терапии и профилактики осложнений не вызывает сомнений.

Толстых Т.Н.¹, Барях Е.А.^{1,2}, Гаглоева Д.Э.¹, Иванова Д.Д.¹, Мисюрина Е.Н.¹, Желнова Е.И.¹, Яцков К.В.¹, Поляков Ю.Ю.¹, Кочнева О.Л.¹, Чуднова Т.С.¹, Литвиненко М.С.¹, Самсонова И.В.¹, Лысенко М.А.¹

ОСОБЕННОСТИ ЛЕЧЕНИЯ ВЗРОСЛЫХ ПАЦИЕНТОВ С ОСТРЫМИ МИЕЛОИДНЫМИ ЛЕЙКОЗАМИ В УСЛОВИЯХ ПАНДЕМИИ COVID-19

¹ГБУЗ «Городская клиническая больница №52» Департамента здравоохранения г. Москвы, г. Москва, ²ФГБОУ ДПО РМАНПО Минздрава России, г. Москва

Введение. Острый миелоидный лейкоз является заболеванием с неблагоприятным прогнозом и сопровождается высокой летальностью, а присоединение коронавирусной инфекции увеличивает эти риски в несколько раз.

Цель. Оценить эффективность лечения и выживаемость пациентов с острым миелоидным лейкозом и подтвержденной коронавирусной инфекцией, а также оценить предикторы госпитальной летальности у данной группы пациентов.

Материалы и методы. С апреля 2020 г. по ноябрь 2022 г. в ГБУЗ ГКБ № 52 пролечено 123 пациента с ОМЛ и подтвержденной коронавирусной инфекцией, с медианой возраста 58 лет (разброс 22–94), при этом 44% пациентов старше 60 лет. Равное соотношение мужчин и женщин, 55 и 68 соответственно. С диагнозом острый промиелоцитарный лейкоз были 8%, остальные 92% — другие варианты ОМЛ. Цитогенетический вариант удалось уточнить у 66 пациентов, сюда не вошли пациенты с ОПЛ. Пациентам проводилась специфическая противоопухолевая терапия в сочетании с лечением коронавирусной инфекции. Высокодозная химиотерапии проведена 43% пациентов, медиана возраста 38 (21–61 год). Низкоинтенсивная терапия — 39%, медиана возраста 70 (60–85 лет). Пациентам с ОПЛ проводилась терапия с включением третиноина. В связи с тяжестью состояния, высоким

риском летальных осложнений 24% пациентов (медиана возраста 76 лет) было противопоказано проведение куров химиотерапии, в связи с этим проводилась лучшая сопроводительная терапия.

Результаты. Главным фактором, определяющим высокую летальность, в нашем исследовании был факт отсутствия ПР острого лейкоза. Выживаемость пациентов в ПР составила $96,3\pm3,6\%$, т.е. практически все пациенты выздоровели от COVID-19 и были выписаны для продолжения лечения в другие лечебные учреждения. Для пациентов вне ремиссии и первичных больных ОМЛ выживаемость составила $38,0\pm6,5$ и $33,7\pm8,7\%$ соответственно. Для анализа предикторов выживаемости мы раздели пациентов на 2 группы, поскольку они сильно различаются по прогнозу. Статус ремиссии по сути перевешивает все другие факторы, включая наличие существенных коморбидностей, варианта ОМЛ, отдельных цитопений, тяжести течения COVID-19 (КТ, СРБ, D-димер и др.), характер терапии ОМЛ и прочих факторов. Негативную прогностическую значимость на госпитальную выживаемость показали возраст старше 60 лет, агранулоцитоз, КТ 3-4, применение ГКС и перевод в ОРИТ.

Заключение. Присоединение COVID-19 у пациентов с ОМЛ сильно ухудшает жизненный прогноз. Ведущим предиктором летальности является отсутствие ремиссии ОМЛ.

Торопова И.Ю.¹, Алешина О.А.², Ротанова М.Н.¹, Лапин В.А.¹, Гвоздарева А.С.¹, Власова С.В.¹, Виноградова Т.А.¹ COVID-19 У ПАЦИЕНТОВ С ЗАБОЛЕВАНИЯМИ СИСТЕМЫ КРОВИ В РЕАЛЬНОЙ КЛИНИЧЕСКОЙ ПРАКТИКЕ

ГЕМАТОЛОГИЧЕСКОГО ОТДЕЛЕНИЯ ОБЛАСТНОЙ КЛИНИЧЕСКОЙ БОЛЬНИЦЫ Г. ЯРОСЛАВЛЯ

¹ГБУЗ ЯО «Областная клиническая больница», г. Ярославль, ²ФГБУ «Национальный медицинский исследовательский центр гематологии»

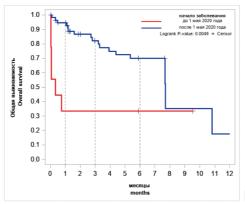
Министерства здравоохранения Российской Федерации, г. Москва

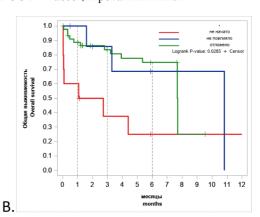
Введение. Пациенты с гемобластозами уязвимы для заражения COVID-19, что связано как с течением самой инфекции, вызывающей угрожающие жизни состояния, так и с проведением цитостатической терапии.

Цель. Оценка влияния COVID-19 на организацию лечебного процесса в рутинной клинической практике отделения гематологии ОКБ г. Ярославля.

Материалы и методы. В исследование включены 68 больных с гемобластозами, у которых во время госпитализации в отделение гематологии ЯОКБ, за период с 01.03.2020 по 03.06.2021 г. выявлен

COVID-19. Больным проводилось лечение по поводу ММ (16,18%), ОЛ (23,53%), НХЛ (41,18%), ХМПЗ (7,35%), ХЛЛ (5,88%) и лимфомы Ходжкина (5,88%). Медиана возраста — 53 года (диапазон 21–85 лет), 41 мужчина (60,3%), 27 женщин (39,7%).


Результаты. Общая выживаемость (OB) на сроке 1 месяц от начала COVID-19 составила 86%, на сроке 3 месяца — 76%, на сроке 6 месяцев — 65% (рис. A). ОВ значимо зависела от даты диагностики COVID-19. В случае подтверждения COVID-19 с 01.03.2020 г. по 01.05.2020 г. ОВ на сроке 3 месяца составила всего 33%, а после 01.05.2020 г. ОВ на этом же сроке — 82% (p=0,0049) (рис. Б).


Столь невысокие показатели ОВ до мая 2020 г. связаны с тем, что COVID-19 — новая инфекция и летальность была сопряжена с невозможностью оказания грамотной медицинской помощи: не проводилась специфическая терапия COVID-19 ввиду отсутствия знаний по его течению, диагностике, лечению, мер профилактики и этапов маршрутизации больных. Не было алгоритмов и препаратов для лечения гематологических пациентов с COVID-19. Конкретные подходы к терапии были применены по мере накопления знаний и клинического опыта. В короткие сроки в отделении разработаны организационные и терапевтические подходы к лечению COVID-19, которые существенно снизили летальность, связанную непосредственно с COVID-19. Проведение на фоне/после завершения COVID-19 цитостатического лечения по поводу гемобластоза позволило снизить риск течения COVID-19 для основного заболевания. ОВ пациентов, у которых лечение гемобластоза не было начато из-за COVID-19, на сроке 3 месяца составила 38%. Больным, которым цитостатическая терапия была отложена или проведена в срок, OB в течение 3-х месяцев — 84% (p=0.0285) (рис. В). Проведен анализ 4-х клинических случаев течения пневмоний у пациентов с гемобластозом и COVID-19. У 4-х больных из 68 выявлен инвазивный

аспергиллез легких (ИАЛ). Для диагностики ИАЛ использовались медицинские критерии ЕСММ/ISHAM 2020. У 2 пациентов ИАЛ подтвержден совокупностью факторов риска, КТ-признаками поражения легких, исследованием БАЛ, который был направлен в лабораторию клинической бактериологии, микологии и антибиотической терапии ФГБУ «НМИЦ гематологии» Минздрава России. Руководитель — д.м.н., проф. Г. А. Клясова. В 1 случае получен рост мицелиального гриба Аврегдіllus niger, во 2-м — Aspergillus fumigatus (ИОП галактоманнана 6.310). У 2 пациентов исследование БАЛ не выполнено; имелись КТ — признаки поражения легких и факторы риска. Указанные критерии для 4-х больных явились показанием для проведения противогрибковой терапии. Из 4-х больных 2 погибли и 2 — живы.

Заключение. Отсутствие знаний по течению COVID-19 у больных гемобластозами в начале пандемии COVID-19 значимо повлияли на ОВ. В отделении разработаны организационные и терапевтические подходы к лечению, позволившие существенно снизить летальность, связанную непосредственно с COVID-19. У больных с гемобластозами и COVID-19, протекающим с поражением легких, необходимо исключить COVID-ассоциированный ИАЛ.

Хрульнова С.А., Кохно А.В., Менделеева Л.П., Клясова Г.А.

ЗНАЧЕНИЕ РЕСПИРАТОРНЫХ ВИРУСОВ В ЭТИОЛОГИИ ПНЕВМОНИЙ У БОЛЬНЫХ С ГЕМАТОЛОГИЧЕСКИМИ ЗАБОЛЕВАНИЯМИ

ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, г. Москва

Введение. В последние годы в этиологии пневмоний немалое значение имеют вирусы.

Цель. Изучить значение респираторных вирусов в этиологии пневмоний.

Материалы и методы. Материалом исследования были образцы жидкости бронхоальвеолярного лаважа (БАЛ), полученные

Таблица 1. Спектр возбудителей инфекции респираторного тракта

	n (%) Всего больных 116 9 (7,8)
	9 (7,8)
респираторно-синцитиальный вирус	
оиновирусы	8 (6,9)
вирусы гриппа А	3 (2,6)
вирус гриппа A/H1N1	2 (66,7)
вирусы гриппа В	2(1,7)
вирусы парагриппа 3 типа	2 (1,7)
соронавирусы видов ОС43, HKUI	2 (1,7)
иетапневмовирус	1 (0,8)
вирусы парагриппа 1 типа	1(0,8)
Сочетание (риновирусы + вирусы гриппа А)	1 (0,8)
Зсего	29 (25,0)

от больных с гематологическими заболеваниями и пневмонией, находившимися на лечении в ФГБУ «НМИЦ гематологии». Для детекции РНК респираторно-синцитиального вируса, метапневмовируса, вирусов парагриппа 1, 2, 3 и 4-го типов коронавирусов видов ОС43, E229, NL63, HKUI, риновирусов и ДНК аденовирусов групп В, С и Е и бокавируса использовали коммерческие наборы «АмплиСенс®

OPBИ-скрин-FL», вирусов гриппа A и гриппа B — «АмплиСенс® Influenza virus A/B-FL», PHK вируса гриппа A/H1N1(sw2009) — «АмплиСенс® Influenza virus A/H1-swine-FL». Исследование проводили с помощью ПЦР в реальном времени.

Результаты. Жидкость БАЛ была исследована от 116 больных, из них 46 (39,7%) — после трансплантации аллогенных гемопоэтических стволовых клеток крови (алло- $T\Gamma CK$), 21 (18,1%) — после ауто-ТГСК по поводу множественной миеломы (ММ), 49 — ТГСК не проводили (14 (28,6%) — ММ, 12 (24,5%) — острый миелоидный лейкоз (ОМЛ), 10 (20,4%) — неходжкинские лимфомы (НХЛ), 6 (12,2%) — острый лимфобластный лейкоз (ОЛЛ), 7 (14%) — другие). Алло-ТГСК была выполнена 24 (52,2%) пациентам ОМЛ, 9 (19,6%) — ОЛЛ, 5 (10,9%) — НХЛ, 4 (8,7%) — МДС, 2 (4,3%) — ММ, $1 (2,2\%) - O\PiЛ$ и 1 (2,2%) - XMЛ. У двух больных было исследовано 2 образца жидкости БАЛ (1 — алло-ТГСК и 1 — ауто-ТГСК). Исследуемые вирусы были детектированы у 29 (25%) из 116 больных. Детекция респираторных вирусов при пневмонии представлена в таблице 1. Вирусы парагриппа 2-го и 4-го типа, коронавирусы NL63, E229,

аденовирусы групп В, С и Е, бокавирус и MERS-CoV не были определены. Наиболее часто детектируемыми были респираторно-синцитиальный вирус (7,8%) и риновирусы (6,9%). Частота детекции всех вирусов была значимо выше в образцах жидкости БАЛ от больных

после ауто-ТГСК (57,1%, *p*<0,0001) и алло-ТГСК (30,4%, p=0,0027) в сравнении с больными без ТГСК (6,1%) (таблица 2). Респираторно-синцитиальный вирус был обнаружен значимо чаще у больных после алло-ТГСК, чем без ТГСК (15,2% против 2%, p=0,0274). РНК риновирусов определяли достоверно чаще у пациентов после ауто-ТГСК (14,3%) в сравнении без ТГСК (0%, ρ =0,024) и в сравнении с алло-ТГСК (8,7%, ρ =0,049). Вирус гриппа А/ H1N1(sw2009) был обнаружен у одного больного после алло-ТГСК (ХМЛ) и у одного — без алло-ТГСК (ММ). У одного больного ОМЛ после алло-ТГСК риновирусы в жидкости БАЛ были повторно выявлены через 2 месяца после первого обнаружения. У больного ММ после ауто-ТГСК были детектированы коронавирусы OC43, HKUI на +15 день после трансплантации, а риновирусы на +110 день.

Заключение. Детекция респираторных вирусов должна быть непременной составляющей в этиологическом поиске возбудителей пневмоний у больных с гематологическими заболеваниями по причине высокой частоты (25%) их детекции. В спектре исследуемых респираторных вирусов преобладают

респираторно-синцитиальный вирус (7,8%) и риновирусы (6,9%). При пневмониях частота детекции респираторных вирусов значимо выше среди больных ММ после ауто-ТГСК (57,1%) и больных после алло-ТГСК (30,4%) в сравнении с больными без ТГСК (6,1%).

Таблица 2. Частота выявления респираторных вирусов в жидкости БАЛ

	Трансплантация, п (%)			
Исследуемые вирусы	алло-ТГСК,	ауто-ТГСК,	не проводилась,	
	46 больных	21 больной	49 больных	
респираторно-синцитиальный вирус	7 (15,2)*	1 (4,8)	1 (2,0)*	
риновирусы	4 (8,7)	3 (14,3)*	0*	
вирусы гриппа А	2 (4,3)	0	1 (2,0)	
вирус гриппа A/H1N1(sw2009)	1/2	0	1	
вирусы гриппа В	0	2 (9,5)	0	
вирусы парагриппа 3 типа	0	1 (4,8)	1 (2,0)	
коронавирусы видов ОС43, HKUI	0	2 (9,5)	0	
метапневмовирус	0	1 (4,8)	0	
вирусы парагриппа 1 типа	1 (2,2)	0	0	
Сочетание (риновирусы + вирусы гриппа A)	0	1 (4,8)	0	
Bcero	14 (30,4)*	12 (57,1)*	3 (6,1)*	

Примечание: * р<0,05

Чебыкина Д.А., Шмидт А.В., Линников С.Ю., Разумный А.В., Шуваев В.А., Кулешова А.В., Юдина В.А., Волошин С.В., Кувшинов А.Ю.

ТИКСАГЕВИМАБ/ЦИЛГАВИМАБ: ОПЫТ ПРИМЕНЕНИЯ ДЛЯ ДОКОНТАКТНОЙ ПРОФИЛАКТИКИ COVID-19 У ВЗРОСЛЫХ ПАЦИЕНТОВ С ОНКОГЕМАТОЛОГИЧЕСКИМИ ЗАБОЛЕВАНИЯМИ

ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии» ФМБА РФ, г. Санкт-Петербург

Введение. Пациенты с онкогематологическими заболеваниями относятся к группе высокого риска инфицирования и развития тяжелых осложнений COVID-19 вследствие характера основного заболевания и особенностей проводимого лечения. Для иммунокомпрометированных пациентов наиболее оптимальным методом долгосрочной доконтактной профилактики является применение моноклональных вируснейтрализующих антител (МАТ) к COVID-19. На сегодня известна комбинация МАТ, связывающаяся с шиповидным белком COVID-19, — тиксагевимаб/цилгавимаб.

Цель. Оценка эффективности и безопасности применения МАТ у пациентов с онкогематологическими заболеваниями.

Материалы и методы. В исследование включены 53 пациента с онкогематологическими заболеваниями. Медиана возраста соста-

вила 58 (21–76) лет, в исследуемой группе преобладали женщины 56,6% (n=30). Медиана наблюдения после введения препарата составила 5,2 (4,2-7,1) месяца. Вакцинацию до введения МАТ прошли 30,18% (*n*=16) пациентов. Для вакцинации 26% (n=14) пациентов применялась вакцина Спутник V и для 4,18% пациентов (n=2) Спутник Лайт соответственно. До введения тиксагевимаба/цилгавимаба COVID-19 перенесли 75% (n=40) пациентов, трое из которых перенесли коронавирусную инфекцию дважды. На момент введения МАТ индукционное и противорецидивное лечение получали 72% (n=38) пациентов, у 18,9% (n=10) пациентов была проведена аутологичная трансплантация костного мозга. Характеристика пациентов представлена в таблице.

Результаты. У 6% (n=3) пациентов был выявлен COVID-19 в течение 6 месяцев после введения МАТ. Все пациенты, заболевшие коронавирусной после проведения доконтактной профилактики, перенесли инфекцию в легкой форме. При проведении факторного анализа возраст пациентов (p=0,8), предшествующая вакцинация (p=0,4), вид

вакцины (ρ =0,62), проведение химиотерапии (ρ ≥0,5) не повлияли на вероятность развития коронавирусной инфекции после введения МАТ. Факт вакцинации до введения МАТ не оказал статистически значимого влияния на эффективность доконтактной профилактики, однако отмечена тенденция к уменьшению развития повторных эпизодов COVID-19 после проведения вакцинации: у вакцинированных пациентов частота повторных эпизодов коронавирусной инфекции составила 6,2% vs 15,4% у невакцинированных (ρ =0,6). При оценке профиля нежелательных явлений тиксагевимаба/цилгавимаба следует выделить эпизоды артериальной гипертензии у троих пациентов, развитие фебрильной лихорадки у двоих пациентов, тошноту у троих пациентов. Остальные нежелательные явления носили единичный характер и имели легкую степень тяжести согласно

Таблица. Характеристика пациентов

Характеристика	N=53	
Возраст	58	
_	(21-76)	
Пол		
-мужской	23 (43,4%)	
-женский	30 (56,6%)	
ECOG на момент вакцинации		
0	20 (38%)	
1	26 (49%)	
2	7 (13%)	
Вакцинация до введения МАТ	16 (30,18%)	
Спутник V	14 (26%)	
Спутник Лайт	2(4,18%)	
Терапия на момент вакцинации		
ПХТ +/-моноклональные антитела	9 (18%)	
Моноклональные антитела	14 (26%)	
Таргетная терапия	15 (28%)	
Ауто-ТГСК в анамнезе	10 (18,9%)	
Без лечения	15 (28%)	

классификации NCI CTCAE v5.0. Адекватный анализ выживаемости провести не удалось, т.к. в нашем исследовании зарегистрирован 1 (1,9%) летальный случай, ассоциированный с инфекционным осложнением в период постцитостатической панцитопении, не связанным с COVID-19.

Заключение. По нашим данным, применение тиксагевимаба/ цилгавимаба в качестве доконтактной профилактики COVID-19 не ассоциировано с утратой/ухудшением гематологического после введения препарата. Были зарегистрированы единичные негематологические нежелательные явления легкой степени тяжести. Эпизодов тяжелого течения COVID-19 после введения тиксагевимаба/цилгавимаба не отмечено. В дальнейшем будет продолжено наблюдение за данной группой пациентов с последующей оценкой иммунитета к COVID-19.

Чуднова Т.С., Мисюрина Е.Н., Барях Е.А., Толстых Т.Н., Кочнева О.Л., Поляков Ю.Ю., Иванова Д.Д., Яцков К.В., Шимановская Л.Т., Желнова Е.В., Гришина Е.Ю., Каримова Е.А., Зотина Е.Н., Гаглоева Д.Э.

НОВЫЕ ВОЗМОЖНОСТИ ТЕРАПИИ COVID-19 У ПАЦИЕНТОВ С ОСТРЫМИ ЛИМФОБЛАСТНЫМИ ЛЕЙКОЗАМИ

ГБУЗ «Городская клиническая больница №52 ДЗМ», г. Москва

Введение. Несмотря на снижение заболеваемости COVID-19 в общей популяции, пациенты с острыми лимфобластными лейкозами (ОЛЛ) по-прежнему остаются уязвимой группой пациентов. В настоящее время коронавирусная инфекция протекает преимущественно в легкой форме. Однако выявление положительного теста на SARS-CoV-2 может откладывать проведение программной противоопухолевой терапии до получения ПЦР-негативного статуса. Учитывая вторичный иммунодефицит на фоне течения гемобластоза, предшествующей химиотерапии и, как следствие, сниженный противовирусный иммунный ответ, у пациентов с ОЛЛ может возникать длительная персистенция вируса SARS-CoV-2.

Цель. Выявить независимые факторы риска, влияющие на общую госпитальную выживаемость, длительность госпитализации и длительность персистенции SARS-CoV-2 у пациентов с ОЛЛ.

Материалы и методы. Проведен ретроспективный анализ пациентов с ОЛЛ и COVID-19, проходивших лечение в городской клинической больнице № 52 с апреля 2020 г. по декабрь 2022 г. Конечные точки исследования: общая госпитальная выживаемость, длительность госпитализации, длительность персистенции SARS-CoV-2. Проведен многофакторный регрессионный анализ, по результатам которого выявлены независимые факторы риска.

Результаты. Всего было пролечено 60 пациентов (30 мужчин, 30 женщин): 25 пациентов в 2020 году, 15 в 2021-м и 20 в 2022 году. 45 пациентов — с диагнозом В-ОЛЛ, 15 — с диагнозом Т-ОЛЛ. На момент госпитализации 28 пациентов находились в ремиссии лейкоза, у 13 был верифицирован рецидив заболевания, 19 пациентам диагноз ОЛЛ был установлен впервые. Смертность составила 25% (11 пациентов в 2020 г., 4 в 2021-м). В 2022 году все пациенты были выписаны. Медиана возраста составила 42 года. Медиана длительности

госпитализации — 13 дней. 41 пациенту проводилась химиотерапия в течение месяца до момента манифестации COVID-19, 23 пациентам химиотерапия проводилась в период госпитализации по поводу коронавирусной инфекции. При анализе факторов, влияющих на общую выживаемость, статистическую значимость показали следующие: возраст старше 40 лет (p=0,013), индекс коморбидности >4 (p=0,019), уровень С-реактивного белка (СРБ) >100 мг/л (p=0,031), уровень лактатдегидрогеназы >400 ЕД/л (p=0,014), уровень анти-SARS-CoV-2 антител <50 ЕД/л на момент исхода (p=0,001), фебрильная лихорадка выше 39 °C на момент госпитализации (p=0,02), пребывание в отделении реанимации (p=0,04), искусственная вентиляция легких (p=0,001). Факторы, повлиявшие на длительность госпитализации: агранулоцитоз (p=0,047), CPБ >100 мг/л (p=0,031), уровень анти-SARS-CoV-2 антител <50 ЕД/л на момент исхода (p=0.042). Факторы, показавшие значимое влияние на длительность персистенции SARS-CoV-2: уровень ферритина >250 мкг/л (p=0,008), отсутствие терапии вируснейтрализующими моноклональными антителами (BHMA) (ρ =0,035). При лечении ВНМА медиана достижения ПЦР-негативного статуса составила 3 дня, при лечении противовирусными препаратами — 4 дня, при проведении трансфузии патоген-редуцировнной антиковидной плазмы — 9 дней.

Заключение. Уровень прироста анти-SARS-CoV-2 антител к моменту исхода показал значимое влияние как на общую госпитальную выживаемость, так и на длительность госпитализации. Также терапия BHMA показала положительное влияние на сокращение периода персистенции SARS-CoV-2. Таким образом, проведение пассивной иммунизации вируснейтрализующими антителами у пациентов с ОЛЛ может быть рассмотрено как для профилактики, так и для лечения COVID-19.