https://doi.org/10.35754/0234-5730-2025-70-2-156-164

СРАВНЕНИЕ ФУНКЦИОНАЛЬНОГО И ИММУНОФЕНОТИПИЧЕСКОГО ПРОФИЛЯ АНТИ-CD19 МОДИФИЦИРОВАННЫХ Т-КЛЕТОК, ЭКСПРЕССИРУЮЩИХ ХИМЕРНЫЙ АНТИГЕННЫЙ РЕЦЕПТОР, ПОЛУЧЕННЫХ ОТ ЗДОРОВЫХ ДОНОРОВ И БОЛЬНЫХ В-КЛЕТОЧНЫМ ОСТРЫМ ЛИМФОБЛАСТНЫМ ЛЕЙКОЗОМ, ПРИ ДЛИТЕЛЬНОЙ РЕСТИМУЛЯЦИИ *IN VITRO*

Ненашева Т.А., Фефелова Е.И., Сердюк Я.В., Сальман Р., Иванова Н.О., Алешина О.А., Боголюбова А.В.*

ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации; 125167, г. Москва, Российская Федерация

■ РЕЗЮМЕ

Введение. Важной характеристикой терапии модифицированными Т-клетками, экспрессирующими химерный антигенный рецептор (chimeric antigen receptor, CAR), является продолжительность персистенции CAR Т-клеток в организме больного. Длительная рестимуляция CAR Т-клеточного продукта *in vitro* с последующим анализом его субпопуляционного состава и цитотоксической активности является одним из способов моделирования поведения клеток в организме больных.

Цель: изучить иммунофенотип, показатели истощения и функциональные характеристики анти-CD19 CAR Т-клеточных продуктов, полученных из клеток здоровых доноров и больных В-клеточным острым лимфобластным лейкозом (В-ОЛЛ), в условиях длительной рестимуляции *in vitro*.

Материалы и методы. Анти-CD19 CAR Т-клеточный продукт получили из клеток 5 здоровых доноров и 3 больных В-ОЛЛ. Проведено изучение иммунофенотипа полученных клеточных продуктов в условиях повторяющейся антигенной рестимуляции *in vitro* с использованием таргетной клеточной линии NALM6, несущей антиген CD19, в течение 7–10 дней. В каждой точке эксперимента были оценены пролиферативная и цитотоксическая активность, экспрессия маркеров истощения и динамика изменения субпопуляционного состава CAR-Т-клеток памяти (иммунофенотип).

Результаты. Анти-CD19 CAR Т-лимфоциты обладали выраженной цитотоксической активностью вне зависимости от источника лимфоцитов (здоровые доноры/больные). В процессе длительной антигенной рестимуляции всех клеточных продуктов наблюдалось уменьшение доли наивных (TN) и эффекторных (TE) CAR Т-клеток и увеличение доли клеток центральной (TCM) и эффекторной памяти (TEM). CAR Т-клетки демонстрировали повышение экспрессии маркеров истощения (PD1, TIM3) вне зависимости от происхождения клеток и соотношения эффектор: таргет.

Заключение. Анализ цитотоксической активности и иммунофенотипического состава CAR Т-клеточных продуктов в условиях длительной рестимуляции выявил тенденцию к снижению цитотоксической активности и отличия в динамике пролиферации и популяционного состава между клеточными продуктами, полученными от больных В-ОЛЛ и здоровых доноров.

Ключевые слова: анти-CD19 CAR T, CAR T-клеточная терапия, иммунофенотип, истощение, цитотоксичность

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Финансирование: работа выполнена в соответствии с государственным заданием «Разработка анти-ВСМА CAR Т-клеточного лекарственного препарата для нужд онкогематологии» РК № 125030703310-3 на выполнение научных исследований ФГБУ «НМИЦ гематологии» Минздрава России.

Для цитирования: Ненашева Т.А., Фефелова Е.И., Сердюк Я.В., Сальман Р., Иванова Н.О., Алешина О.А., Боголюбова А.В. Сравнение функционального и иммунофенотипического профиля анти-CD19 модифицированных Т-клеток, экспрессирующих химерный антигенный рецептор, полученных от здоровых доноров и больных В-клеточным острым лимфобластным лейкозом, при длительной рестимуляции *in vitro*. Гематология и трансфузиология. 2025; 70(2):156–164. https://doi.org/10.35754/0234-5730-2025-70-2-156-164

COMPARISON OF THE FUNCTIONAL AND IMMUNOPHENOTYPICAL PROFILE OF ANTI-CD19 CAR T-CELLS DERIVED FROM HEALTHY DONORS AND PATIENTS WITH B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA DURING PROLONGED RE-STIMULATION IN VITRO

Nenasheva T.A., Fefelova E.I., Serdyuk Y.V., Salman R., Ivanova N.O., Aleshina O.A., Bogolyubova A.V.*

National Medical Research Center for Hematology, 125167, Moscow, Russian Federation

ABSTRACT

Introduction. An important characteristic of therapy with modified T-cells expressing the chimeric antigen receptor (CAR) is the duration of CAR T-cell persistence in the patient's body. Prolonged re-stimulation of CAR T-cell product *in vitro* with further analysis of its subpopulation composition and cytotoxic activity is one of the approaches to model cell behavior in patients. Aim: to study the immunophenotype, exhaustion and functional characteristics of anti-CD19 CAR T-cell products derived from healthy donors and patients with B-cell acute lymphoblastic leukemia (B-ALL) at prolonged re-stimulation conditions *in vitro*. Materials and methods. Anti-CD19 CAR T-cell products were generated from 5 healthy donors and 3 patients with B-ALL. The immunophenotype of the obtained cell products was studied under conditions of repeated antigenic re-stimulation *in vitro* using the target cell line NALM6 carrying the CD19 antigen over 7-10 days. At each experimental timepoint, the following parameters were assessed: proliferative and cytotoxic activity, expression of exhaustion markers, and changes in the subpopulation composition of CAR T-memory cells (immunophenotype).

Results. Anti-CD19 CAR T-cells had significant cytotoxic activity regardless of the lymphocyte source (healthy donors/patients). During prolonged antigenic re-stimulation of all products, a decrease in the proportion of naive (TN) and effector (TE) CAR T-cells, and an increase in the proportion of central (TCM) and effector memory (TEM) cells was observed. CAR T-cells showed increased expression of exhaustion markers (PD1, TIM3) irrespective of the origin of the cell and E:T ratio.

Conclusion. Analysis of cytotoxic activity and immunophenotypic composition of CAR T-cell products under conditions of prolonged re-stimulation revealed a trend toward decreased cytotoxicity, as well as differences in proliferation dynamics and population composition between cell products obtained from B-ALL patients and healthy donors.

Keywords: anti-CD19 CAR T, CAR T-cell therapy, immunophenotype, exhaustion, cytotoxicity

Conflict of interest: the authors declare no conflict of interest.

Financial disclosure: the study was performed in accordance with the State Assignment "Development of anti-BCMA CAR T-cell drug for the needs of oncohematology" RK № 125030703310-3 for the performance of scientific research of the National Medical Research Center for Hematology.

For citation: Nenasheva T.A., Fefelova E.I., Serdyuk Ya.V., Salman R., Ivanova N.O., Aleshina O.A., Bogolyubova A.V. Comparison of the functional and immunophenotypical profile of anti-CD19 CAR T-cells derived from healthy donors and patients with B-cell acute lymphoblastic leukemia during prolonged restimulation *in vitro*. Russian Journal of Hematology and Transfusiology (Gematologiya i transfuziologiya). 2025; 70(2):156–164. https://doi.org/10.35754/0234-5730-2025-70-2-156-164

Введение

Терапия модифицированными Т-клетками, экспрессирующими химерный антигенный рецептор (chimeric antigen receptor) — CAR Т терапия против CD19, является эффективным методом лечения В-клеточных злокачественных новообразований, в частности В-клеточного острого лимфобластного лейкоза

(В-ОЛЛ). САЯ Т-клетки — это генетически модифицированные Т-клетки, экспрессирующие химерный антигенный рецептор, который обеспечивает функцию распознавания антигена на поверхности клеток и их специфический лизис. Несмотря на высокую частоту полного ответа на САЯ Т терапию у больных В-ОЛЛ,

у многих из них возникает ранний рецидив в течение первых трех лет после терапии [1, 2], поэтому в настоящее время исследования направлены на изучение влияния различных параметров САК Т-клеток на исход терапии и поиск возможных путей увеличения эффективности терапии в долгосрочной перспективе [3].

Показано, что долгосрочная ремиссия возможна при длительной персистенции CAR Т-клеток в организме больного, поэтому субпопуляционный состав и функциональная активность CAR Т-клеток могут быть важнейшими параметрами для предсказания эффективности терапии с использованием клеточных продуктов. С этой целью возможно проведение исследований таких параметров клеточных продуктов, как иммунофенотип, степень экспрессии маркеров истощения (таких, как PD1, TIM3, LAG3, FASL, CTLA4, TIGIT), величина продукции цитокинов, цитотоксические функции в формате *in vitro* [4–7].

Целью данного исследования являлся сравнительный анализ иммунофенотипа, степени истощения и цитотоксической активности анти-CD19 CAR Т-клеточных продуктов, полученных из клеток здоровых доноров и больных В-ОЛЛ, в условиях длительной антигенной рестимуляции *in vitro*.

Материалы и методы

Получение CAR Т-клеток. Образцы мононуклеарных клеток периферической крови (МПК) были получены от 5 здоровых доноров и 3 больных В-ОЛЛ (табл. 1). Из МПК методом магнитной сепарации на колонке с использованием магнитных бус $CytoSinct^{TM}$

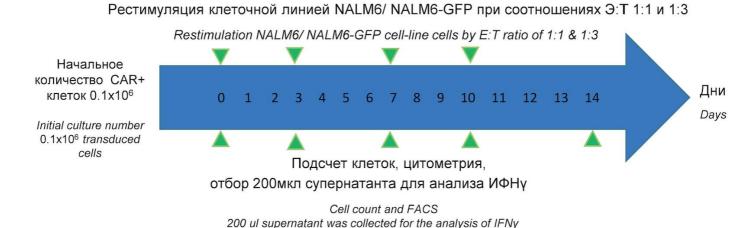
CD3 Nanobeads (GenScript, США) были выделены СD3+ клетки, после чего их активировали с помощью CD3/CD28 наночастиц EnceedTM T Cell Activation (GenScript, США). Подсчет CD3+ клеток проводили на автоматическом клеточном счетчике «LUNA IITM» (Logos Biosystems, Южная Корея) и трансдуцировали лентивирусными частицами (ФГБУ «НМИЦ гематологии» Минздрава России), содержащими анти-CD19 CAR конструкцию второго поколения. Далее клетки культивировали в среде ImmunoCultTM-XF T Cell Expansion Medium (STEMCELL Technologies, Канада) в присутствии интерлейкина (ИЛ)-7 и ИЛ-15 (Miltenyi Biotec, Германия). Эффективность трансдукции CAR Т-клеток оценивали методом проточной цитофлуориметрии путем окрашивания клеток рекомбинантным белком CD19-Fc, конъюгированным с красителем AF647 (ФГБУ «НМИЦ гематологии» Минздрава России).

Линии клеток. В качестве мишени, экспрессирующей В-лимфоцитарный антиген CD19, использовали линию клеток острого лимфобластного лейкоза NALM6 и NALM6-GFP, экспрессирующую зеленый флуоресцентный белок (GFP, NALM6-GFP). Необходимость использовать параллельно две клеточные линии, отличные только по экспрессии флуоресцентного белка, была продиктована спецификой составления многоцветной цитофлуориметрической панели в эксперименте по оценке иммунофенотипа. Клеточную линию NALM6-GFP использовали для оценки цитотоксичности CAR Т-клеток, а линию NALM6 — для оценки иммунофе

Таблица 1. Клинико-патологические характеристики больных B-ОЛЛ и здоровых доноров **Table 1.** Clinicopathological characteristics of patients with B-ALL and healthy donors

Идентификационный номер Identification number	Пол Gender	Возраст Аде	Диагноз Diagnosis	Вариант заболевания Type of diagnosis	Количество линий терапии Number of therapy lines
Больной 1 Patient 1	ж/ғ	38	В-ОЛЛ В-ALL	B-II, 46 XX	1 (ОЛЛ-2016) 1 (RALL-2016)
Больной 2 Patient 2	ж/ғ	27	В-ОЛЛ B-ALL	B-I, t (4;11) (q21; q23)	1 (ОЛЛ-2016) 1 (RALL-2016)
Больной 3 Patient 3	ж/ғ	44	В-ОЛЛ B-ALL	B-I, † (4;11) (q21; q23)	1 (ОЛЛ-2016) 1 (RALL-2016)
Донор 1 Donor 1	ж/ғ	25	здоровый доброволец healthy donor	-	-
Донор 2 Donor 2	ж/ғ	25	здоровый доброволец healthy donor	-	-
Донор 3 Donor 3	ж/ғ	31	здоровый доброволец healthy donor	-	-
Донор 4 Donor 4	ж/ғ	57	здоровый доброволец healthy donor	-	-
Донор 5 Donor 5	M/M	26	здоровый доброволец healthy donor	-	-

нотипа и степени истощения. Клетки культивировали в среде IMDM (Thermo Fisher Scientific, США), содержащей 10% фетальной телячьей сыворотки (Capricorn, Германия), 100×10^3 мг/л пенициллина/стрептомицина (Thermo Fisher Scientific, США), при температуре 37 °C и 5% CO $_2$


Длительная антигенная рестимуляция CAR Т-клеток. 0.1×10^6 CAR+ Т-клеток культивировали совместно с клеточной линией NALM6-GFP, несущей на своей поверхности антиген CD19, и параллельно 0,1×10⁶ CAR+ Т-клеток с NALM6 в соотношениях эффектор: таргет (Э:Т), равных 1:1 и 1:3, в среде ImmunoCultTM-XF T Cell Expansion Medium (STEMCELL Technologies, Канада), содержащей 0,01 мг/ИЛ-7 и 0,01 мг/л ИЛ-15 (Miltenyi, Германия) в 500 мкл в лунке 48-луночного планшета. Каждые 3–4 дня проводили подсчет общего количества живых клеток в лунке с использованием клеточного счетчика LUNA. Методом проточной цитометрии оценивали процентное содержание CAR+ T-клеток и NALM6-GFP. Для этого в каждой точке анализа отбирали 0,1×10⁶ клеток, после чего планшет центрифугировали при 350 g, 5 минут, 22 °C, из лунок отбирали 200 мкл супернатанта для последующей оценки продукции интерферона (ИФН)-ү методом иммуноферментного анализа (ИФА). В лунки вносили необходимое количество NALM6-GFP для восстановления соотношений Э:Т, доводили объем в лунке до 500 мкл свежей культуральной средой. На 7-й день клетки пересаживали в 1 мл культуральной среды в лунку 24-луночного планшета (Wuxi NEST Biotechnology Со., Китай). Общая схема эксперимента представлена на рисунке 1.

Анализ цитотоксической активности САЯ+ Т-клеток. Количество САЯ+ клеток и клеток NALM6-GFP определяли методом проточной цитометрии; САЯ+ клетки окрашивали рекомбинантным белком СD19-Fc, конъюгированным с красителем АF647 (ФГБУ «НМИЦ гематологии» Минздрава России, Россия), клетки NALM6-GFP детектировали по экспрессии флуорес-

центного белка GFP, результаты анализировали с использованием программ «FlowJo 10.81» и «Graphpad Prizm 10.2.3.»

Анализ истощения и субпопуляционного состава САК+ Т-клеток. В каждой точке анализа клетки окрашивали смесью антител: CD3-AF700 (Clone OKT3, Sony), CD4-FITC (Clone RPA-T4, Sony), CD8a-PerCP-Cy5.5 (Clone RPA-T8, Sony), CD19-PE-Cy7 (Clone HIB19, Sony), CD19-Fc (АF-647, ФГБУ «НМИЦ гематологии» Минздрава России) и делили каждую пробу на 2 равные части. Для анализа маркеров истощения в пробу добавляли антитела PD1-BV421 (Clone EH12.2H7, Sony) и TIM-3-PE-Cy7 (CloneF38-2E2, для анализа субпопуляций клеток памяти добавляли CD45RO-PE-Cy7 (Clone UCHL1, Sony), CD197-PE-Dazzle594 (Clone G043H7, Sony). Анализ проводили с помощью BD FACSAria III (BD Biosciences), данные обрабатывали с использованием программы FlowJo 10.8.1.

Анализ секреции ИФН-ү. Концентрацию ИФН-ү в образцах определяли методом ИФА с использованием набора «гамма-Интерферон-ИФА-БЕСТ» («Вектор Бест», Россия) в соответствии с инструкцией производителя. В каждой контрольной точке эксперимента по антигенной рестимуляции CAR Т-клеток отбирали 200 мкл супернатанта из каждого образца, замораживали, хранили при -20 °C, размораживали непосредственно перед анализом. Значения измеряли на спектрофотометре «Multiskan FC Microplate Photometer» (Thermo Fisher Scientific, США). Результаты учитывали как разницу (Δ) между антиген-стимулированной и спонтанной продукцией ИФН-ү нетрансдуцированными клетками и представляли в виде медианы (Ме) и межквартильного диапазона [Q1-Q3]. В качестве порогового значения концентрации ИФН-у использовали 50 пг/мл (среднее значение различий между концентрациями ИФН-ү при определении величины неспецифической продукции ИФН-ү нетрансдуцированными лимфоцитами).

Рисунок 1. Схема эксперимента. Стрелками обознаены дни подсчета клеток **Figure 1.** Experimental scheme. The arrows indicate the cell count days.

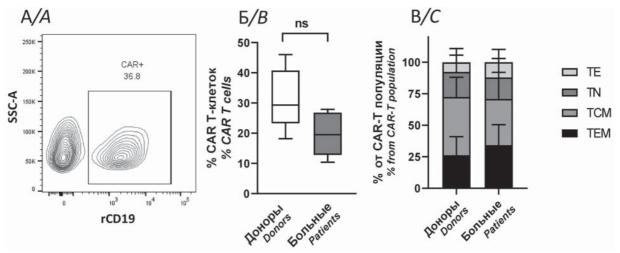
Статистический анализ. Для проверки гипотез о различиях распределений количественных признаков в группах сравнения использовали критерий Манна — Уитни. Различия признавали значимыми при $\rho < 0.05$. Анализ проводили с использованием программы «Graphpad Prizm 10.2.3».

Результаты

CARТ-клеточного Характеристика продукта. Получили анти-CD19 CAR Т-клеточные продукты из МПК пяти здоровых доноров и 3 больных В-ОЛЛ, у доноров медиана трансдукции составила 31,5%, у больных 18,9%, однако эти различия не были статистически достоверны. Полученные CAR Т-клеточные продукты больных и доноров отличались по субпопуляционному составу, но эти различия также не были статистически значимы. Продукты больных содержали меньшее количество наивных Т-лимфоцитов (TN) и лимфоцитов центральной памяти (ТСМ), а содержание популяций эффекторных (ТЕ) и терминальных эффекторов (ТЕМ) было больше. (рис. 2А, Б, В).

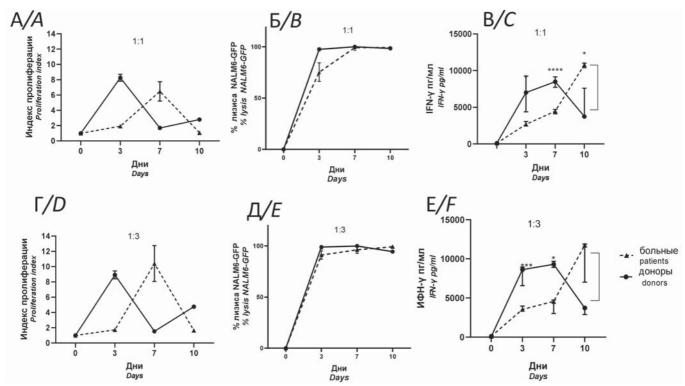
Динамика экспансии CAR Т-клеток в условиях длительной антигенной рестимуляции различалась у больных В-ОЛЛ и здоровых доноров. В ходе эксперимента в каждой временной точке была оценена общая клеточность популяции CAR+ клеток. Она показала, что все CAR Т-клеточные продукты демонстрировали высокий потенциал к экспансии в ответ на антигенный стимул независимо от источника клеток и соотношения Э:Т. Индекс пролиферации (соотношение количества CAR+ клеток в лунке в каждой точке анализа и количества CAR+ клеток в предшествующей точке анализа) варьировал в пределах от 1,5 до 10,4 в зависимости от временной точки и соотношения Э:Т. Пик пролиферации CAR+ клеток, полученных из клеток здоровых доноров, приходился на 3 день, тогда как CAR Т-клетки, полученные из МПК больного, демонстрировали отложенный во времени пик пролиферации,

соответствующий 7-му дню эксперимента. После пика экспансии показатели индекса пролиферации уменьшались у всех групп клеточных продуктов, что, по-видимому, может быть связано с клональным истощением репертуара Т-лимфоцитов, вызванным длительной антигенной рестимуляцией [8]. На рисунках 3 А и 3 Г приведены данные по пролиферации для групп доноров и больных. Каждая точка представляет собой среднее значение со стандартной ошибкой среднего.


САК Т-клеточные продукты обладали выраженными цитотоксическими свойствами вне зависимости от источника клеток. Для исследования цитотоксической активности CAR Т-клеточных препаратов в каждой точке исследования определяли процент лизиса таргетных клеток NALM6-GFP. Процент лизиса определяли по формуле:

$$L = 100 - (n/m \times 100),$$

где L — процент лизиса, n — количество оставшихся клеток NALM6-GFP на день C, m — количество добавленных клеток NALM6-GFP на день C-1.


В день 3 медиана лизиса для доноров и больных при соотношении Э:Т 1:1 составила 95,5 и 75%, при соотношении Э:Т 1:398,8 и 91% соответственно. К 10-му дню у больных лизис достигал 99%, а у доноров наблюдалось незначительное снижение до 94%. Таким образом, при длительной рестимуляции САК Т-клеточные препараты здоровых доноров и больных были одинаково эффективны по отношению к NALM6-GFP в двух соотношениях Э:Т 1:1 и 1:3, при этом пик пролиферации САК Т-клеток соответствовал высокому проценту лизиса опухолевых клеток NALM6-GFP (см. рис. 3 А–Д).

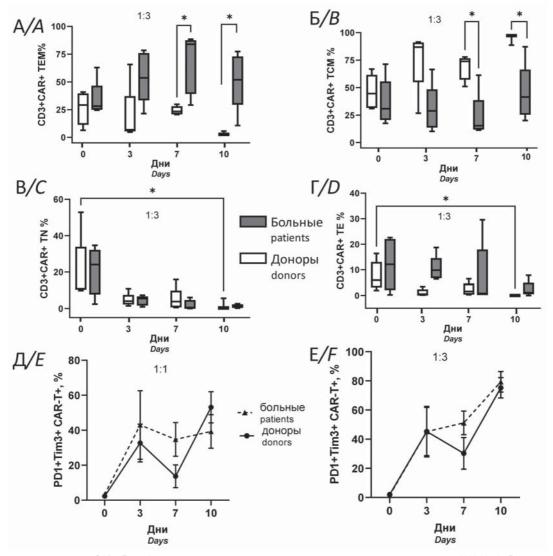
Анализ концентрации провоспалительного цитокина ИФН- γ в культуральной среде после культивирования CAR Т-клеток больных и доноров с таргетными клетками NALM6 показал высокое содержание ИФН- γ в культуральной среде на всем протяжении

Рисунок 2. Характеристика CAR Т-клеточных продуктов, полученных из МПК доноров и больных: А — репрезентативный график доли трансдукции МПК донора 1, Б — процент трансдукции, В — субпопуляционный состав CAR Т-клеток

Figure 2. Characterization of CAR T cell products derived from donor and patient PBMCs: A- representative graph of the transduction percentage of donor 1's PBMC, B- transduction percentage, C- CAR T cell subpopulation composition

Рисунок 3. Анти-CD19 CAR Т-клетки, полученные из МПК доноров и больных, рестимулированные таргетной линией NALM6-GFP в дни 0, 3, 7 в соотношениях Э:Т 1:1 и 1:3, демонстрировали высокую степень пролиферации и цитотоксичность: А, Γ — кратность пролиферации CAR-T-клеток, полученных от доноров и больных, во время хронической рестимуляции линией опухолевых клеток, экспрессирующих CD19 (NALM6), в условиях Э:Т (A — 1:1, Γ — 1:3); Б, Π — процент лизиса таргетных клеток NALM6-GFP в лунке при разных соотношениях Э:Т, для CAR-T, полученных из МПК доноров и больных; В, E — динамика концентрации ИФН- Ψ , секретируемого CAR T-клетками, в различных временных точках. * означает P < 0,05, ** P < 0,01, *** P < 0,001, **** P < 0,0001. Количество экспериментов n = 2, доноров n = 5, больных n = 3 **Figure 3.** Anti-CD19 CAR T cells derived from donor and patient PBMC and n restimulated with the NALM6-GFP target cell line on days 0, 3 and 7 at n 2:T ratios of 1:1 and 1:3 demonstrated a high degree of proliferation and cytotoxicity: n A, n — proliferation rate of donor- and patient-derived CAR T cells during chronic restimulation with the CD19-expressing tumor cell line (NALM6) under n 2:T conditions (A — 1:1 and n — 1:3); n 8, n — percentage of lysis of NALM6-GFP target cells in a well at different n 2:T ratios for donor- and patient-derived CAR-T cells; n CAR-T cells; n 0.001, **** n < 0.0001. Number of experiments n = 2, donors n = 5, patients n = 3

эксперимента. Между образцами супернатантов от CAR Т-клеток доноров и больных при соотношении Э:Т 1:1 наблюдалось статистически значимое различие в величине секреции ИФН-ү в день 7 и 10 рестимуляции (рис. 3 В), при соотношении Э:Т 1:3 наблюдалось статистически достоверное различие в величине секреции ИФН-ү в день 3 и 7 рестимуляции (рис. 3 Е), что соответствовало более позднему росту цитотоксичности САR Т-клеток больных в день 7 (рис. 3 Б, Д).


Более поздняя пролиферация и цитотоксический ответ клеток больных на стимуляцию NALM6 в сравнении с клетками доноров могут быть связаны с изначально более дифференцированным фенотипом, что следует из данных С. Е. Graham и соавт. [9], однако в приведенных экспериментах на маленькой выборке статистически значимых иммунофенотипических отличий не обнаружили.

Иммунофенотипические особенности САЯ Т-клеток, полученных от доноров и больных. Оценили влияние длительной антигенной рестимуляции на субпопуляционный состав САЯ-Т-клеточного продукта. В каждой точке исследования определяли содержание в продукте следующих популяций: наивных клеток — TN (CD45RO-CCR7+), эффекторных клеток памя-

ти — TEM (CD45RO+CCR7-), клеток центральной памяти — TCM (CD45RO+CCR7+) и эффекторных клеток — TE (CD45RO-CCR7-). В день 0 субпопуляционный состав CAR+ Т-клеток, полученных из МПК клеток больных и доноров, достоверно не отличался (рис. 4 A– Γ). У больных на 7-й и 10-й день содержание клеток центральной памяти (TCM) в продукте было достоверно ниже, а содержание эффекторных клеток памяти (TEM) достоверно возрастало. Описанные изменения были характерны только для соотношения Э:Т 1:3, для соотношения Э:Т 1:1 достоверных различий выявлено не было (данные не показаны).

Статистически значимым было уменьшение содержания в CAR+ Т-клеточных продуктах доноров и больных популяций TN и TE клеток, что можно объяснить быстрой дифференцировкой наивных клеток и постоянной гибелью эффекторных клеток при повторной стимуляции таргетной линией NALM6 (рис. 4 В, Γ). Различия наблюдались только при соотношении $\Im T$ 1:3.

Для оценки динамики истощения CAR Т-клеток было проанализировано изменение доли истощенных PD-1+TIM-3+CD3+CAR+ Т-лимфоцитов в ответ на длительную рестимуляцию таргетными клетками. У доноров и больных в CAR-Т продукте до начала рестимуляции

Рисунок 4. Иммунофенотип и истощение CAR+ Т-лимфоцитов изменяются в процессе антигенной рестимуляции линией NALM6: $A-\Gamma-$ популяционный состав CAR+ Т-лимфоцитов в разные дни рестимуляции при соотношении \ni :Т 1:3, A- TCM, B- TEM, B- TN, $\Gamma-$ TE; \Box , E- динамика истощения (коэкспрессия маркеров PD-1 и TIM-3) CAR+ клеток, полученных от доноров и больных, во время антигенной рестимуляции клетками линии NALM6 в соотношении \ni :Т, равном 1:1 (\Box) и 1:3 (E) *in vitro*. * P < 0,05, *** P < 0,001

антигеном доля популяции клеток, экспрессирующей маркеры истощения PD-1+TIM3+, была низкой (1-3%). К 3-му дню наблюдалось увеличение исследуемой популяции клеток до 40%, а к 10-му — до 60–79%. Статистически достоверной разницы степени истощения CAR+ Т-лимфоцитов между донорами и больными при соотношениях 1:1 и 1:3 обнаружено не было, динамика истощения была характерна для всех продуктов, независимо от источника клеток (рис. 4 Д, E).

Обсуждение

Применение аутологичных САR Т-клеточных продуктов является прорывом в персонализированной терапии В-клеточных злокачественных новообразований крови. В то же время важной проблемой остается влияние исходного клеточного материала на качество САR Т продукта и его эффекторные функции [9].

В этой работе показана тенденция к снижению доли трансдукции вирусными частицами Т-лимфоцитов у больных В-ОЛЛ, что означает уменьшение содержания CAR Т-клеток в готовом продукте больных. В то же время влияния исходного субпопуляционного состава МПК на качество CAR T продукта не обнаружено. Тем не менее в работах на больших выборках было показано, что иммунофенотип МПК может быть использован в качестве предиктивного маркера эффективности терапии. J. A. Fraiettatta и соавт. [10] показали, что длительная ремиссия у больных хроническим лимфолейкозом после проведения CAR T терапии была связана с наличием субпопуляции слабодифференцированных CD27+CD45RO-CD8+ Т-лимфоцитов среди МПК. В другой работе [11] была показана связь между низкой эффективностью CAR Т терапии и дефицитом субпопуляции наивных

Т-лимфоцитов в периферической крови педиатрических больных.

В рамках настоящей работы также оценили функциональные и иммунофенотипические различия CAR T клеточных продуктов, полученных от здоровых доноров и больных. Анализ цитотоксической активности CAR Т-клеток по отношению к клеткам-мишеням NALM6 показал, что CAR Т-клеточные продукты обладали выраженным эффекторным действием независимо от происхождения клеток, однако отличались по пролиферативному потенциалу. Максимальную экспансию клеточного продукта доноров наблюдали в 3-й день, а у больных — в 7-й день эксперимента. Схожие данные были получены и другими исследователями. В работе D. K. Y. Zhang и соавт. [12] был проведен анализ экспансии CAR Т-клеток в ответ на стимуляцию активационными частицами CD3/CD28, клетки больных продемонстрировали более низкую скорость экспансии при более высоких концентрациях частиц CD3/CD28.

Оценили динамику изменения субпопуляционного состава САР Т-клеточных продуктов доноров и больных при длительной рестимуляции опухолевыми клетками. К 10-му дню у доноров и больных наблюдали уменьшение доли субпопуляции наивных (TN) Т-лимфоцитов, что соответствовало уменьшению индекса пролиферации. Одновременно доля субпопуляции Т-лимфоцитов эффекторного фенотипа (TE) увеличивалась во всех клеточных продуктах. Похожие данные были получены другими исследователями в экспериментах на мышиной модели, в которых пока-

Литература / References

- 1. Maude S.L., Frey N., Shaw P.A., et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. DOI: 10.1056/NEJMoa1407222.
- 2. Xu X., Sun Q., Liang X., et al. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front Immunol. 2019;10:2664. DOI: 10.3389/fimmu.2019.02664.
- 3. Garfall A.L., Dancy E.K., Cohen A.D., et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3(19):2812–5. DOI: 10.1182/bloodadvances.2019000600.
- 4. Si X., Xiao L., Brown C.E., et al. Preclinical Evaluation of CART Cell Function: In Vitro and In Vivo Models. Int J Mol Sci. 2022;23(6):3154. DOI: 10.3390/ijms23063154.
- 5. García-Calderón C.B., Sierro-Martínez B., García-Guerrero E., et al. Monitoring of kinetics and exhaustion markers of circulating CART cells as early predictive factors in patients with B-cell malignancies. Front Immunol. 2023;1–14. DOI: 10.3389/fimmu.2023.1152498.
- 6. Haradhvala N.J., Leick M.B., Maurer K., et al. Distinct cellular dynamics associated with response to CAR T therapy for refractory B cell lymphoma. Nat Med. 2022;28(9):1848–59. DOI: 10.1038/s41591-022-01959-0.
- 7. Deng Q., Han G., Puebla-Osorio N., et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12):1878–87. DOI: 10.1038/s41591-020-1061-7.

 8. Schober K., Voit F., Grassmann S., et al. Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection. Nat Immunol.

2020;21(4):434-41. DOI: 10.1038/s41590-020-0628-2.

зано, что доля субпопуляции стволовых клеток памяти (TSCM (CD45RA+CD62L+CD95+)) в конечном CAR Т-клеточном продукте больных В-ОЛЛ положительно коррелировала с экспансией CAR Т-клеток *in vivo*. Напротив, высокая доля субпопуляции TEM в конечном продукте отрицательно влияла на экспансию CAR Т-клеток *in vivo* [13].

Доля экспрессии маркеров истощения PD1 и TIM3 на CAR Т-клетках больных и доноров при увеличенной опухолевой нагрузке была выше при соотношении Э:Т 1:3. Повышенные значения экспрессии маркеров истощения, таких как PD1 и TIGIT, соответствуют более дифференцированному фенотипу Т-клеток [14] и их функциональной несостоятельности [15]. Повышение экспрессии маркеров PD1 и TIM3 при повторяющейся антигенной рестимуляции подчеркивает риск функционального истощения CAR Т-клеток, что требует дальнейшего изучения для оптимизации их терапевтического применения.

Несмотря на различия в кинетике пролиферации, цитотоксическая активность CAR Т-клеток оставалась высокой во всех клеточных продуктах, полученных как из клеток доноров, так и из клеток больных. Это подтверждает перспективность использования CAR Т терапии даже у больных с исходно измененным иммунным статусом. Дальнейшие исследования должны быть направлены на выявление молекулярных механизмов, лежащих в основе этих различий, и разработку персонализированных подходов к производству САR Т-клеточных продуктов.

- 9. Graham C.E., Jozwik A., Quartey-Papafio R., et al. Gene-edited healthy donor CAR T cells show superior anti-tumour activity compared to CAR T cells derived from patients with lymphoma in an in vivo model of high-grade lymphoma. Leukemia. 2021;35(12):3581–4. DOI: 10.1038/s41375-021-01324-z.
- 10. Fraietta J.A., Lacey S.F., Orlando E.J., et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71. DOI: 10.1038/s41591-018-0010-1.
- 11. Das R.K., Vernau L., Grupp S.A., et al. Naïve T-cell Deficits at Diagnosis and after Chemotherapy Impair Cell Therapy Potential in Pediatric Cancers. Cancer Discov. 2019;9(4):492–9. DOI: 10.1158/2159-8290.CD-18-1314.
- 12. Zhang D.K.Y., Adu-Berchie K., Iyer S., et al. Enhancing CAR T cell functionality in a patient-specific manner. Nat Commun. 2023;14(1):506. DOI: 10.1038/s41467-023-36126-7.
- 13. Arcangeli S., Falcone L., Camisa B., et al. Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Front Immunol. 2020;1–11. DOI: 10.3389/fimmu.2020.01217.
- 14. Ren H., Cao K., Wang M. A Correlation Between Differentiation Phenotypes of Infused T Cells and Anti-Cancer Immunotherapy. Front Immunol. 2021;1–12. DOI: 10.3389/fimmu.2021.745109.
- 15. Jackson Z., Hong C., Schauner R., et al. Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma. Cancer Discov. 2022;12(8):1886–903. DOI: 10.1158/2159-8290.CD-21-1586.

Информация об авторах

Ненашева Татьяна Анатольевна, старший научный сотрудник лаборатории трансляционной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: dreminat@mail.ru

ORCID: https://orcid.org/0000-0002-1669-5244

Фефелова Екатерина Игоревна, стажер-исследователь лаборатории трансплантационной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: eifefelova27@gmail.com

ORCID: https://orcid.org/0000-0002-3296-503X

Сердюк Яна Викторовна, научный сотрудник лаборатории трансляционной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации.

e-mail: serdyuk.ya.v@gmail.com

ORCID: https://orcid.org/0000-0003-1573-7614

Иванова Наталия Олеговна, молекулярный биолог лаборатории трансляционной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: ivanova.n@blood.ru

ORCID: https://orcid.org/0000-0002-4725-6391

Алешина Ольга Александровна, кандидат медицинских наук, заведующая отделом клеточной и иммунной терапии, врач-гематолог ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: dr.gavrilina@mail.ru

ORCID: http://orcid.org/0000-0002-9969-8482

Салман Рэнд, лаборант лаборатории трансляционной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации,

e-mail: randsalman1@gmail.com

ORCID: https://orcid.org/0009-0005-1842-4498

Боголюбова Аполлинария Васильевна*, кандидат биологических наук, заведующая лабораторией трансляционной иммунологии ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации, e-mail: apollinariya.bogolyubova@gmail.com

ORCID: https://orcid.org/0000-0002-8664-6341

* Автор, ответственный за переписку

Поступила: 27.05.2025 Принята к печати: 10.06.2025

Information about the authors

Tatiana A. Nenasheva, Senior researcher, Laboratory of Translational Immunology, National Medical Research Center for Hematology, e-mail: dreminat@mail.ru

ORCID: https://orcid.org/0000-0002-1669-5244

Ekaterina I. Fefelova, Assistant researcher, Laboratory of Transplantation Immunology, National Medical Research Center for Hematology,

e-mail: eifefelova27@gmail.com

ORCID: https://orcid.org/0000-0002-3296-503X

Yana V. Serdyuk, Researcher, Laboratory of Translational Immunology, National Medical Research Center for Hematology,

e-mail: serdyuk.ya.v@gmail.com

ORCID: https://orcid.org/0000-0003-1573-7614

Rand Salman, Laboratory assistant, Laboratory of Translational Immunology, National Medical Research Center for Hematology,

e-mail: randsalman1@gmail.com

ORCID: https://orcid.org/0009-0005-1842-4498

Natalia O. Ivanova, Molecular biologist, Laboratory of Translational Immunology, National Medical Research Center for Hematology,

e-mail: ivanova.n@blood.ru

ORCID: https://orcid.org/0000-0002-4725-6391

Olga A. Aleshina, Cand Sci (Med), Head of the Laboratory of Cellular and Immune Therapy, hematologist, Department of Hematology and Chemotherapy of Acute Leukemia and Lymphomas, National Medical Research Center for Hematology,

e-mail: dr.gavrilina@mail.ru

ORCID: https://orcid.org/0000-0002-9969-8482

Apollinariya V. Bogolyubova*, Cand. Sci. (Biol.), Head of the Laboratory of Translational Immunology, National Medical Research Center for Hematology, e-mail: apollinariya.bogolyubova@gmail.com

ORCID: https:/orcid.org/0000-0002-8664-6341

* Corresponding author

Received 27 May 2025 Accepted 10 Jun 2025