Обзорная статья

ОБЗОРЫ ЛИТЕРАТУРЫ

© КОЛЛЕКТИВ АВТОРОВ 2017 УДК 616.155.194.294-085.38

Рахмани А.Ф., Михайлова Е.А., Дубинкин И.В.

ТАКТИКА ТРАНСФУЗИОННОЙ ТЕРАПИИ КОНЦЕНТРАТАМИ ТРОМБОЦИТОВ У БОЛЬНЫХ С ДЕПРЕССИЯМИ КРОВЕТВОРЕНИЯ

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России, 125167, г. Москва, Россия

Современная терапия заболеваний системы крови подразумевает необходимость интенсивного применения качественного и безопасного трансфузионного обеспечения сопроводительной терапии. Трансфузии концентратов тромбоцитов (КТ) являются основным эффективным методом купирования геморрагических осложнений при тромбоцитопениях вследствие угнетения нормального кроветворения или повышенного потребления тромбоцитов. Наиболее высокая потребность в трансфузиях КТ по их объемам и частоте отмечается у больных апластической анемией (АА), миелодиспластическим синдромом (МДС), различными вариантами острого лейкоза, а также после трансплантации гемопоэтических стволовых клеток (ТГСК). При этом множественные трансфузии донорских тромбоцитов могут являться фактором риска развития аллоиммунизации лейкоцитарными (HLA) и специфическими тромбоцитарными (НРА) антигенами донорских клеток крови и стать причиной развития иммунологической рефрактерности к трансфузиям КТ. Таким аллоиммунизированным больным трансфузии КТ целесообразно осуществлять на основе индивидуального подбора с помощью иммунологических тестов на совместимость пар «донор – реципиент». При множественной аллоиммунизации подбор пары «донор – реципиент» бывает затруднен или невозможен. В таких случаях методом выбора может быть плазмаферез, целью которого является устранение циркулирующих аллоантител и аутоантител.

Ключевые слова: обзор литературы; трансфузии концентратов тромбоцитов; аллоиммунизация; иммунологическая рефрактерность; индивидуальный подбор; плазмаферез.

Для цитирования: Рахмани А.Ф., Михайлова Е.А., Дубинкин И.В. Тактика трансфузионной терапии концентратами тромбоцитов у больных с депрессиями кроветворения. *Гематология и трансфузиология.* 2017; 62(4): 218-222. DOI: http://dx.doi.org/10.18821/0234-5730-2017-62-4-218-222

Rakhmani A.F., Mikhaylova E.A., Dubinkin I.V.

TACTICS OF PLATELET TRANSFUSION THERAPY IN PATIENTS WITH DEPRESSION OF THE HEMATOPOIESIS: REVIEW

National Medical Research Center for Hematology, Moscow, 125167, Russian Federation

Modern therapy of hematological diseases requires the intensive use of maintenance of high-quality and safe platelet concentrate (PC) transfusions. Transfusions of PCs are the main method of arresting hemorrhagic complications in thrombocytopenia. The highest need to PC transfusions is noted in patients with aplastic anemia (AA), myelodysplastic syndrome (MDS), acute leukemia and after transplantation of hematopoietic stem cells (THSC). Multiple PC transfusions may be a risk factor for the development of alloimmunization by leukocyte (HLA) and specific platelet (HPA) antigens. It is advisable to carry out such PC transfusion in alloimmunized patients on the basis of the individual selection with the use of immunological compatibility tests of donor-recipient pairs. In cases of multiple alloimmunization, the selection of a "donor-recipient" pair is difficult or impossible. Circulating alloantibodies and autoantibodies can be eliminated by plasmapheresis.

Keywords: literature review; transfusion of platelet concentrates; alloimmunization; immunological refractivity; individual selection; plasmapheresis.

For citation: Rakhmani A.F., Mikhaylova E.A., Dubinkin I.V. Tactics of platelet transfusion therapy in patients with depression of the hematopoiesis: review. Russian journal of Hematology and Transfusiology (Gematologia i Transfusiologiya). 2017; 62(4): 218-222. (in Russian). DOI: http://dx.doi.org/10.18821/0234-5730-2017-62-4-218-222

Acknowledgments. The study had no sponsorship. Conflict of interest. The authors declare no conflict of interest. Received 13 Nov 2017

Для корреспонденции:

Accepted 29 Dec 2017

Рахмани Анжелика Фаридовна, врач-гематолог, аспирант отдела процессинга клеток крови и криоконсервирования ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России, 125167, г. Москва, Россия. E-mail: angelique.r86@mail.ru

For correspondence:

Rakhmani Anzhelika F., MD, hematologist, graduate student of the Department of processing of blood cells and cryopreservation, National Medical Research Center for Hematology, Moscow, 125167, Russian Federation. E-mail:angelique.r86@mail.ru.

Information about authors:

Rakhmani A.F., http://orcid.org/0000-0002-1568-0999, Researcher ID: Q-1929-2017 Mikhaylova E.A., http://orcid.org/0000-0002-2449-2682, Researcher ID: P-7589-2014; Dubinkin I.V., http://orcid.org/0000-0001-5347-0127, Researcher ID: P-87942014. Трансфузии концентратов тромбоцитов (КТ) являются одним из основных методов лечения и профилактики геморрагических осложнений, обусловленных тромбоцитопенией [1]. Термин «тромбоцитопения» подразумевает изолированное снижение количества тромбоцитов в крови ниже $150 \times 10^9/\mathrm{n}$ [2, 3]. Однако клинические проявления геморрагического синдрома обычно возникают при содержании тромбоцитов менее $50 \times 10^9/\mathrm{n}$ [1, 2]. К основным патогенетическим механизмам развития тромбоцитопений относятся: снижение продукции тромбоцитов и сокращение пула мегакариоцитов в костном мозге; инфильтрация костного мозга опухолевыми клетками; повышенное разрушение тромбоцитов, связанное с иммунными и неиммунными факторами и др. [2–4].

Тромбоцитопения, связанная со сниженной продукцией тромбоцитов и сокращением пула мегакариоцитов в костном мозге (КМ), является характерным симптомом апластической анемии (АА) [5] - заболевания системы крови, характеризующегося глубокой панцитопенией в результате угнетения костномозгового кроветворения и развитием аплазии КМ [5, 6]. Одним из клинических проявлений болезни является геморрагический синдром на фоне выраженной тромбоцитопении [7]. Ведущим механизмом поражения кроветворения при АА считается иммунная агрессия, направленная на клетки - предшественники гемопоэза [5, 6]. В патогенезе АА выделяют несколько иммуноопосредованных механизмов: олигоклональная экспансия цитотоксических Т-клеток, направленная против гемопоэтических (стволовых) клеток; неконтролируемая продукция цитокинов (интерферон γ – INF γ , фактор некроза опухоли α – TNF α , трансформирующий фактор роста в – TGFв; подавление пролиферации и индукция апоптоза клеток-предшественников гемопоэза; нарушение регуляции клеточного цикла (снижение колониеобразующей способности). В результате развивается костномозговая недостаточность и аплазия КМ [5, 6]. В основе патогенетического механизма тромбоцитопении при гемобластозах лежит опухолевая инфильтрация КМ бластными клетками и сокращение пула мегакариоцитов, а также воздействие цитостатической терапии [7, 8].

Исследования, проведенные ранее в «Гематологическом научном центре» (ныне «Национальном медицинском исследовательском центре гематологии» — НМИЦ гематологии) Минздрава России, показали, что основными маркерами иммунологической рефрактерности являются анти-HLA- и анти-HPA-антитела [9, 10]. Частота встречаемости анти-HLA аллогенных антител у больных с рефрактерной к трансфузиям КТ тромбоцитопенией, колеблется от 20–30% при острых лейкозах до 80–100% при аплазиях КМ. Анти-HLA-антитела могут быть транзиторными исчезать в процессе лечения. Частота встречаемости изолированных анти-HPA составляла 49% у больных АА, 52% у больных острым миелоидным лейкозом (ОМЛ) [9, 10].

Аллоиммунизация к НРА может являться следствием трансфузий тромбоцитов больным с патологией гликопротеидных комплексов при тромбоцитопатиях [3, 4]. Например, тромбастения Гланцмана характеризуется качественными и количественными дефектами GPIIb/IIIa. Повторные трансфузии тромбоцитов доноров больным с данной патологией могут привести к аллоиммунизации против нативных антигенов донорских тромбоцитов. Так как комплекс GPIIb/IIIa содержит наиболее значимые аллоантигены тромбоцитов НРА, его сниженная экспрессия при тромбастении Гланцмана может привести к выработке именно анти-НРА-антител [3]. Сенсибилизация к антигенам НРА-15 обычно ассоциируется с аллоиммунной тромбоцитопенией плода и новорожденного и при этом обычно сочетается с аллоантителами к другим тромбоцитарным антигенам, чаще к GPIIb/IIIaПри возникновении посттрансфузионной пурпуры (ПТП) чаще всего отмечается появление анти-НРА1а-антител [4]. ПТП развивается у больных с НРА1 в гомозиготном состоянии HPA1b/HPA1b или резко сниженным уровнем экспрессии антигена НРА1а. У таких реципиентов могут быть сформированы аллогенные антитела и клетки иммунологической памяти к НРА1а вследствие иммунизации во время беременности или заместительной трансфузионной терапии. Как правило, тяжелая тромбоцитопения развивается спустя 5–10 дней после трансфузии КТ. Механизм тяжелой тромбоцитопении при ПТП может быть связан и с адсорбцией на GPIIIa растворимого антигена HPA1а или микрочастиц тромбоцитов с ĤPA1a [3, 4].

Трансфузии КТ у гематологических больных проводят как с профилактической целью, так и с целью лечения геморрагического синдрома [11].

Существуют данные разных исследовательских групп, свидетельствующие о целесообразности проведения трансфузий КТ только при снижении количества тромбоцитов менее $10 \times 10^9/\pi$ [11, 12]. При наличии синдрома потребления (сепсис, лихорадка, спленомегалия и др.) показанием к трансфузиям КТ является тромбоцитопения менее $20 \times 10^9/\pi$ [13, 14].

Трансфузии КТ проводят с профилактической целью уменьшения риска развития спонтанных кровотечений при концентрации тромбоцитов в периферической крови менее $10 \times 10^9/\pi$; перед установкой центрального венозного катетера при концентрации тромбоцитов в периферической крови $20 \times 10^9/\pi$ и ниже; перед проведением люмбальной пункции или объемных оперативных вмешательств — при количестве тромбоцитов в периферической крови $50 \times 10^9/\pi$ и ниже [12].

При развитии геморрагического синдрома любой степени трансфузии КТ проводят независимо от количества тромбоцитов в периферической крови [11–14].

Алгоритм использования трансфузий донорских клеток у больных АА во многом зависит от этапа иммуносупрессивной терапии (ИСТ) [15]. Современная тактика лечения AA позволяет добиться общей выживаемости в течение 10 лет у 80-85% больных [16]. Терапия АА включает в себя: трансплантацию аллогенного костного мозга при наличии HLA-гистосовместимого донора-родственника; комбинированную ИСТ с применением препаратов антитимоцитарного глобулина (АТГ) и циклоспорина А [15, 16]. АТГ – препарат, полученный путем иммунизации животных лимфоцитами человека (тимоцитами плода) [17]. Использование препаратов данного ряда в терапии больных АА базируется на их избирательном лимфоцитотоксическом эффекте в отношении активированных Т-лимфоцитов [17]. Эффективность современного лечения во многом определяется качеством сопроводительной терапии, в частности трансфузионной. На подготовительном этапе перед введением АТГ показана адекватная трансфузионная поддержка КТ и эритроцитной взвесью для поддержания количества тромбоцитов выше 30×10^9 /л, а концентрации гемоглобина – выше 80 г/л [5, 16]. Частота трансфузий определяется индивидуально. На фоне введения АТГ может усиливаться геморрагический синдром [17]. Поэтому трансфузионное обеспечение курса терапии АТГ (5 дней) и раннего послекурсового периода (2-3 нед) требует наиболее интенсивной трансфузионной поддержки: эритроцитная взвесь и КТ применяют с такой частотой и в таком объеме, которые необходимы для поддержания концентрации гемоглобина выше $80 \, г/л$, тромбоцитов выше $40 \times 10^9/л$. Главной целью эффективного лечения является профилактика геморрагических осложнений [5, 6, 15–17].

Эффективность трансфузий КТ оценивают по уменьшению или исчезновению геморрагического синдрома, а также по увеличению абсолютного прироста тромбоцитов (АПТ) и скорректированного прироста тромбоцитов (СПТ) через 1 и 24 ч после трансфузии КТ [18–20].

Для своевременного выявления рефрактерности к трансфузиям КТ используют расчетные показатели прироста тромбоцитов. В настоящее время общепринятым является показатель посттрансфузионного прироста тромбоцитов — СПТ [4, 18–20]. Расчет СПТ проводят по формуле:

СПТ = площадь поверхности тела (ППТ) (м²) \times АПТ/количество перелитых тромбоцитов \times 10^{11} .

Эффективность трансфузионной терапии у гематологических больных зависит от совокупности факторов иммунной и неиммунной природы, характера течения заболевания (лихорадка, очаги инфекции, спленомегалия, наличие тяжелых осложнений, прогрессия заболевания), наличия предшествующих гемотрансфузий, беременностей [21, 22].

К критериям эффективности относят:

- клинические прекращение спонтанной кровоточивости и отсутствие свежих геморрагий на коже и на видимых слизистых оболочках:
- лабораторные АПТ через 24 ч более 10×10^9 /л и СПТ через 1 ч после трансфузии более 7,5 × 10^9 /л и через 18—24 ч более 4,5 × 10^9 /л [18].

Обзорная статья

Отсутствие у больного лечебного эффекта от трансфузий КТ, снижение или отсутствие посттрансфузионного прироста количества тромбоцитов характеризуют рефрактерность к трансфузиям КТ. Согласно общепризнанному определению, под рефрактерностью понимают неэффективность двух последовательных трансфузий тромбоцитов, соответствующих стандартам заготовки, совместимых по системе AB0 со сроком хранения не более 5 сут от момента заготовки, при СПТ через 24 ч менее 4,5×10°/л [18, 20].

Рефрактерность к трансфузиям КТ может быть обусловлена как иммунными, так и неиммунными факторами [23]. Неиммунные факторы – это лихорадка, сепсис, инфекции, спленомегалия, синдром диссеминированного внутрисосудистого свертывания (ДВС-синдром). Иммунные факторы – это выработка антитромбоцитарных и антилейкоцитарных циркулирующих аллоантител (анти-HPA/HLA) к мембраннным антигенам тромбоцитов; тромбоцитассоциированных иммуноглобулинов (platelet-associated immunoglobulins – PAIg) аутоиммунной природы, а также гаптеновых вирус-ассоциированных и антител мекарственным антигенам (гепарин, гентамицин, ванкомицин, амфотерицин, ципрофлоксацин, салицилаты, сульфаниламиды) [24–26]. Активную роль в элиминации тромбоцитов могут играть и специфические цитотоксические Т-лимфоциты [27].

По специфичности аллогенные антитела к тромбоцитам могут быть направлены к антигенам трех групп: эритроцитарным (AB0, Lewis), лейкоцитарным (HLA класса I) и тромбоцитарным (HPA). Появление у больного циркулирующих антитромбоцитарных антител может быть причиной развития иммунологических реакций негемолитического типа и привести к полному отсутствию клинического эффекта от трансфузии КТ [28]. Иммунный ответ на трансфузии КТ может проявляться аллоиммунной и аутоиммунной реакцией (в том числе гаптеновой).

Независимо от того, какой специфичности индуцированные антитромбоцитарные антитела, они приводят либо к непосредственной гибели тромбоцитов путем их лизиса, либо опосредованно через взаимодействие с иммуноглобулинами и последующим фагоцитозом этих комплексов клетками ретикулоэндотелиальной системы в селезенке и печени [23]. Рефрактерность может возникать за счет вторичного иммунного ответа у больных, первично иммунизированных во время беременности или предшествующих трансфузий [29–31].

Генерация аллоиммунного ответа происходит при взаимодействии донорского антигена с антигенпрезентирующими клетками (АПК) реципиента с последующей его презентацией вместе с собственной молекулой НLА класса II своим СD4+ Т-лимфоцитам (механизм двойного распознавания). Активированные CD4+ Т-лимфоциты начинают секретировать цитокины: интерлейкин 2 (IL-2), INFγ и др., под действием которых В-лимфоциты превращаются в плазматические клетки, вырабатывающие специфические антитромбоцитарные антитела [23, 27].

J. Manis и L. Silberstein [27] отметили, что специализированные АПК, такие как дендритные клетки, макрофаги, которые могут присутствовать в КТ, играют важную роль в развитии НLА-аллоиммунизации реципиентов по механизму прямого распознавания. Донорские АПК напрямую взаимодействуют с Т-лимфоцитами реципиента и инициируют сложный процесс лимфоцитарной активации и продукции аллоантител.

Иммунизация больного HPA-антигенами при трансфузиях донорских тромбоцитов может предшествовать тотальной HLA-аллоиммунизации [10, 32, 33].

Кроме того, на поверхности тромбоцитов могут адсорбироваться гаптены (лекарства, вирусы), а также растворимые формы аллоантигенов доноров [4, 30].

Множественные трансфузии КТ могут приводить к срыву иммунологической толерантности, что сопровождается выработкой PAIg, фиксированных на тромбоцитах (IgG, IgM, IgA) и приводит к не купируемым тяжелым геморрагическим осложнениям [34, 35].

Образовавшиеся PAIg индуцируют антителозависимую клеточноопосредованную цитотоксичность, а также усиливают фагоцитоз тромбоцитов за счет взаимодействия с Fc-рецепторами фагоцитирующих клеток ретикулоэндотелиальной системы — макрофагами, моноцитами в большей степени в селезенке, а также в печени и КМ [23, 27].

Описаны функционально активные аутоантитела, которые могут ингибировать или активировать тромбоциты [3, 4]. Ингибирующие аутоантитела обычно направлены против рецепторов тромбоцитов (IIb/IIIa и Ib/IX) и обладают способностью блокировать их рецепторную активность. Ингибирующие аутоантитела увеличивают риск развития геморрагического синдрома [3, 4]. По данным многих авторов [25, 26, 34, 35], большинство антител связывается с рецепторными комплексами гликопротеидов GPIIb/IIIa и Ib/IX. Большая часть PAIg принадлежит классу IgG, меньшая часть – к IgA. Кроме того, отмечается высокая частота выявления IgM-антител у гематологических больных, что свидетельствует о возможной неспецифической активности антител при множественных трансфузиях.

При рефрактерности к трансфузиям КТ необходимо осуществлять индивидуальный подбор пары «донор – реципиент» с учетом отсутствия у реципиента антител к тромбоцитам конкретного донора [36, 37].

В настоящее время существует ряд современных методов выявления антитромбоцитарных антител: радиоиммунный анализ, иммуноферментный анализ, методы MAIPA [38]. Но все они являются трудоемкими и дорогостоящими. Более того, в связи с высоким полиморфизмом HLA и HPA-аллоантигенов тромбоцитов, фенотипирование и генотипирование доноров и реципиентов с целью подбора совместимых пар нецелесообразно.

Альтернативным подходом является кросс-матчтестирование пары «донор – реципиент» методом адгезии тромбоцитов на твердой фазе. Преимуществами этого метода являются возможность одновременно осуществлять скрининг антитромбоцитарных антител (анти-HLA и анти-HPA) и проводить индивидуальный подбор пары «донор – реципиент» с помощью данного метода совмещения тромбоцитов [39–41].

Одним из современных методов для идентификации антител к тромбоцитам является метод проточной цитофлюориметрии [42]. Метод стал применяться для дифференциальной диагностики тромбоцитопений в последние десятилетия. Он является наиболее чувствительным для выявления РАІд при любых тромбоцитопениях (первичных и вторичных); при этом чувствительность метода с объективизацией учета результатов составляют более 90–95%. Метод позволяет выявлять РАІд разных классов иммуноглобулинов (IgM, IgG и IgA). Преимуществами являются высокая скорость, позволяющая анализировать большие клеточные объемы, и возможность выполнения сложных одновременных измерений нескольких параметров каждой клетки в одной суспензии [42–44].

Таким образом, развитие аллоиммунизации и в последующем рефрактерности к трансфузиям донорских КТ значительно осложняет проведение адекватной современной терапии у гематологических больных. Поэтому особое внимание должно быть направлено на первичную профилактику аллоиммунизации у трансфузионнозависимых больных [20, 45].

Для снижения содержания лейкоцитов, которые могут вызвать HLA-иммунизацию и привести к нежелательным реакциям, а также с целью профилактики реакции «трансплантат против хозяина» (РТПХ), ассоциированной с трансфузиями у иммунодефицитных реципиентов, необходимо применять совместимые по системе ABO, лейкоредуцированные и облученные в дозе 25 Гр КТ [8, 45, 46]. Лейкоредукция – процесс удаления лейкоцитов и АПК с помощью лейкоцитарных фильтров, встроенных в современные аппараты для тромбоцитафереза. Трансфузии лейкоредуцированных и облученных КТ значительно снижает образование аллогенных антител у больного, но полностью не исключает этого, что впоследствии может приводить к посттрансфузионным реакциям [8, 46].

Сенсибилизация донорскими белками плазмы может также являться риском развития посттрансфузионных реакций. В связи с этим в некоторых случаях используют КТ во взвешивающем (добавочном) растворе [47].

Рекомендуется использовать КТ со сроком хранения не более 3 дней, так как выброс тромбоцитами провоспалительных цитокинов и других биологически активных веществ увеличивается после 3 дней хранения [48].

Аллоиммунизированным больным трансфузии КТ как первый этап терапии рекомендуется проводить от HLA-совместимого донора, но этот подход дорогостоящий, а адекватный клинический эффект не всегда удается получить. Поэтому

подбор совместимых пар «донор – реципиент» целесообразно осуществлять с помощью иммунологических тестов перекрестного совмещения, что позволяет одновременно определять наличие циркулирующих антитромбоцитарных антител в сыворотке больного и проводить подбор КТ для пары «донор – реципиент» в конкретный момент времени [36-41].

При неэффективности подбора, высокой частоте реагирования за счет тотальной HLA-аллоиммунизации и HPA-сенсибилизации, а также при наличии посттрансфузионных реакций (фебрильная негемолитическая лихорадка, сывороточная болезнь) нередко прибегают к использованию плазмафереза с дальнейшими трансфузиями КТ с индивидуальным подбором [49, 50].

Целью плазмафереза является устранение или снижение титров циркулирующих антитромбоцитарных и антилейкоцитарных антител для преодоления иммунологической рефрактерности к трансфузиям КТ, а также для проведения адекватной заместительной гемостатической терапии во время курсов иммунносупрессивной и полихимиотерапии. [49, 50]. Процедуры проводят с частотой 2-3 раза в неделю, с изъятием половины объема циркулирующей плазмы больного за одну процедуру, курс состоит в среднем из 5-10 процедур. Замещение проводят свежезамороженной плазмой из расчета 20-25 мл/кг. При низком содержании альбумина дополнительно проводят замещение 5-10%-ным раствором альбумина (40% от объема удаленного белка). При возникновении реакций замещение можно проводить физиологическим раствором и альбумином под контролем концентрации общего белка в сыворотке крови [51, 52].

Критериями эффективности являются увеличение АПТ и СПТ после трансфузии КТ через 24 ч. снижение частоты реакций, снижение концентрации циркулирующих антитромбоцитарных антител и увеличение вероятности подбора пары «донор – реципиент». Процедуры плазмафереза сочетают с трансфузией АВО-совместимыми, индивидуально подобранными в иммуннологических тестах тромбоцитами [49-53].

При невозможности предупредить посттрансфузионные реакции, рекомендуется переливать КТ во взвешивающем (добавочном) растворе [47, 54]. Применение добавочных растворов снижает риск развития негемолитических посттрансфузионных реакций. Кроме того, использование добавочных растворов при заготовке КТ способствует сохранению функциональной активности тромбоцитов при сроках хранения до 7 дней [47, 54]. При неэффективности плазмафереза, а также при наличии PAIg в высоких значениях, терапией 3-й линии может являться внутривенное введение иммуноглобулина (ВВИГ). По мнению ряда авторов [31, 55], внутривенный иммуноглобулин может обеспечить увеличение прироста вскоре после переливания и подавлять активность PAIg, однако стойкость данной реакции является ограниченной. Через 24 ч количество тромбоцитов обычно возвращается на начальный уровень. Поэтому для эффективности следует проводить терапию иммуноглобулином в дозе 1 г/кг 1-2 инфузии на протяжении 2 дней. Учитывая возможность плохой переносимости инфузии ВВИГ за 1-2 дня, можно использовать также и традиционный режим -0.4 г/кг в сутки в течение 5 дней [31].

Имеются данные литературы [4] о полезности введения тромбоцитов методом «медленной инфузии» малыми дозами в течение 4-12 ч. Также возможно проведение плазмообменов с удалением целого объема циркулирующей плазмы больного.

В работе W. Liu и соавт. [56] описана эффективность лечения рефрактерности к трансфузиям КТ ритуксимабом у больных с депрессиями кроветворения. Это препарат моноклонального химерного антитела к CD20-антигену, который экспрессируется на всех В-лимфоцитах. Ритуксимаб неселективно элиминирует весь пул В-клеток, в том числе и клоны В-лимфоцитов, продуцирующие антитромбоцитарные антитела. Возможно, лечебный эффект ритуксимаба реализуется не только через уничтожение клонов В-лимфоцитов, но и через иммуномодуляцию, в результате которой происходит стойкая элиминация антигенспецифических Т-хелперов, а также восстановление числа регуляторных Т-лимфоцитов.

При определении тактики ведения больных с рефрактерностью к трансфузиям КТ рекомендуется исключить рефрактерность, связанную с неиммунными факторами, такими как синдром повышенного потребления (лихорадка, сепсис, кровотечение, РТПХ, ДВС-синдром и др.). Также необходимо учитывать дополнительные факторы такие, как вирусные инфекции, прием

некоторых лекарственных препаратов, терапия гепарином, терапия основного заболевания (АТГ, химиотерапия) [18–22]

Таким образом, трансфузии КТ являются неотъемлемой частью сопроводительной терапии гематологических больных. Несмотря на описанные выше различные меры по преодолению рефрактерности к трансфузиям КТ, предсказать формирование такого клинико-гематологического феномена не всегда удается. Актуальной задачей является дальнейшее распознавание отдельных механизмов, снижающих эффективность трансфузий КТ, разработка новых подходов для преодоления рефрактерности, а также изучение информативности различных диагностических тестов для обнаружения антитромбоцитарных антител и цитотоксических Т-лимфоцитов.

Финансирование. Исследование не имело спонсорской поддержки. Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

ЛИТЕРАТУРА

- Зотиков Е.А., Бабаева А.Г., Головкина Л.Л. Тромбоциты и антитромбо-интарные антитела. М.: Монолит: 2003.
- Мазуров А.В. Физиология и патология тромбоцитов. М.: Литтерра;
- Жибурт Е.Б., Мадзаев С.Р. Заготовка и переливание тромбоцитов. Руководство для врачей. М.: Российская академия естественных наук; 2013. Савченко В.Г. Программное лечение заболеваний системы крови. Сбор-
- Савченко В.Г. Программное лечение заоолевании системы крови. Соорник алгоритмов диагностики и протоколов лечения заболеваний системы крови. М.: Практика; 2012.
 Войцеховский В.В., Ландышев Ю.С., Целуйко С.С., Заболотских Т.В. Геморрагический синдром в клинической практике. Благовещенск: Амур-
- жарриа-ческий сипором в клинеской практике. Быйсовещенск: Тыгурская государственная медицинская академия; 2014. Васильев С.А., Виноградов В.Л., Мазуров А.В. Тромбоцитопении. Акушерство. Гинекология. Репродукция. 2014; 8(2): 112–5.
- шерство. Гинекология. Репродукция. 2014; 8(2): 112—5. Головкина Л.Л. Антигены тромбоцитов и их значение в медицине. Гема-тология и трансфузиология. 2010; 55(4): 24—31. Головкина Л.Л., Зотиков Е.А. Аллоиммунизация к антигенам систем НРА и НLА у гематологических больных с множественными трансфузи-ями компонентов крови. Новое в трансфузиологии. 2003; 34: 12—22. Зарубин М.В., Губанова М.Н., Гапонова Т.В., Парамонов И.В., Мадзаев С.Р., Хальзов К.В. и др. Обеспечение эффективности и безопасности пе-
- Зарубин М.В., Губанова М.Н., Гапонова Т.В., Парамонов И.В., Мадзаев С.Р., Хальзов К.В. и др. Обеспечение эффективности и безопасности переливания тромбоцитов. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2016; 11(3): 118–25. Балашов Д.Н., Трахтман П.Е. Особенности проведения трансфузионной терапии у пациентов после трансплантации гемопоэтических стволовых клеток. Обзор литературы. Онкогематология. 2013; 7(3): 42–6. Михайлова Е.А., Устинова Е.Н., Клясова Г.А. Программное лечение лейкозов. М.: ГНЦ РАМН; 2008: 328–42. Михайлова Е.А. Савченко В.Г. Прогокол программного лечения боль-

- Михайлова Е.А., Савченко В.Г. Протокол программного лечения боль-
- ных апластической анемией: комбинированная иммуносупрессивная терапия. М.: Практика; 2012. Головкина Л.Л. Генетическая рестрикция гуморального иммунного ответа. *Онкогематология*. 2014; 8(2): 58–62. Глазанова Т.В., Грицаев С.В., Шилова Е.Р., Павлова И.Е., Чубукина Ж.В., Розанова О.Е. и др. Выработка аллогенных антител к антигенам лейкоци-
- Розанова О.Е. и др. Выработка аллогенных антител к антигенам лейкоцитов и тромбоцитов (анти-НLА и анти-НРА) у больных с заболеваниями системы крови на фоне трансфузий компонентов крови. Гематология и трансфузиология. 2015; 60(4): 26–9. Минеева Н.В., Гавровская С.В., Кробинец И.И., Пашкова И.А., Бодрова Н.Н., Сысоева Е.А. Частота выявления антиэритроцитарных, антилей-коцитарных антитромбоцитарных аллоантител у больных гематологическими заболеваниями. Онкогематология. 2013; 7(4): 13–7. Минеева Н.В., Кробинец И.И., Блинов М.Н., Капустин С.И. Антигены и антитела к тромбоцитам» (обзор литературы). Онкогематология. 2013; 3: 60–8. Бутина Е.В., Зайцева Г.А., Карпов Д.А., Целоусова О.М.. НLАсенсибилизация: риск развития посттрансфузионные осложнения методы профилактики. Трансфузиология. 2005; 4(6): 52–6. Глазанова Т.В., Розанова О.Е., Павлова И.Е., Чубукина Ж.В., Шилова Е.Р., Бубнова Л.Н. Влияние гемокомпонентной терапии на показатели иммунитета и образование аллоантител у больных апластической ане-

- Е.Р., Бубнова Л.Н. Влияние гемокомпонентной терапии на показатели иммунитета и образование аллоантител у больных апластической анемии. Вестник гематологии. 2015; 11(3): 4–8.
 30. Пашкова И.А., Гилевич И.В., Минеева Н.В. Алгоритм патогенетической диагностики тромбоцитопении. Кубанский научный медицинский вестник. 2014; 145(3): 93–9.
 31. Масчан А.А., Румянцев А.Г., Ковалева Л.Г., Афанасьев Б.В., Поспелова Т.И., Зарицкий А.Ю. и др. Рекомендации Российского совета экспертов по диагностике и лечению больных первичной иммунной тромбоцитопенией. Онкогематология. 2010; 3: 36–45.
 32. Красникова Н.А., Порешина Л.П., Головкина Л.Л., Зотиков Е.А. Выявление антитромбоцитарных антител у больных с тромбоцитопенией. Новое в трансфузиологии. 1999; 24: 44–9.
 47. Карпова О.В., Ройтман Е.В., Игнатова А.А. Оценка качества тромбоцитного концентрата, заготовленного методом афереза с использованием

- Карпова О.В., Ройтман Е.В., Игнатова А.А. Оценка качества тромбоцит-ного концентрата, заготовленного методом афереза с использованием добавочного раствора SSP+. Вопросы гематологии, онкологии и иммуно-патологии в педиатрии. 2014; 13(2): 20–4. Головкина Л.Л., Кутьина Р.М., Зотиков Е.А., Калинин Н.Н., Штырева Е.М., Михайлова Е.А. Влияние плазмафереза, проводимого в сочетании с трансфузиями тромбоцитов, на активность антитромбоцитарных антител. Новое в трансфузиологии. 2001; 29: 57–65. Головкина Л.Л., Кутьина Р.М., Зотиков Е.А., Калинин Н.Н., Штырева Е.М., Михайлова Е.А. Влияние плазмафереза, на активность антитром-боцитарных антител. Клиническая лабораторная диагностика. 2002; 4: 54–5.
- Калинин Н.Н. Клиническое применение экстракорпоральных методов лечения. М.: Трекпор Технолоджи; 2006.

53. Михайлова Е.А., Ядрихинская В.В., Вернюк М.А., Устинова Е.А., Исаев В.Г., Штырева Е.М., Головкина Л.Л., Стремоухова А.Г., Калинин Н.Н., Савченко В.Г. Плазм- и лимфоцитаферез в комплексной терапии апластической анемии. Труды VIII конференции московского общества гемафереза. Москва. 2000.

устром. тоскова. 2000. Остальные источники пп. 1, 6, 11, 12, 17–20, 22, 23, 27, 33–46, 48, 51 см. в References.

REFERENCES

REFERENCES

Holbro A., Infanti L., Sigle J., Buser A. Platelet transfusion: basic aspects. Swiss Med. Wkly. 2013; 143: w13885. https://doi.org/10.4414/smw.2013.13885. Zotikov E.A., Babaeva A.G., Golovkina L.L. Platelets and antiplatelet antibodies. Moscow: Monolith; 2003. (in Russian) Mazurov A.V. Physiology and pathology of platelets. M: Littera; 2011. (in Russian) Mazurov A.V. Physiology and pathology of platelets. M: Littera; 2011. (in Russian) Acotors. Moscow: Russian Academy of Natural Sciences; 2013. (in Russian) Savchenko V.G. Program treatment of diseases of the blood system. Algorithms for diagnosis and protocols for the treatment of diseases of the blood system. Algorithms for diagnosis and protocols for the treatment of diseases of the blood system. Moscow: Practice; 2012. (in Russian) Killick S.B., Bown N., Cavenagh J., Dokal I., Foukaneli T., Hill A., et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br. J. Haematol. 2016; 172(2): 187–207. Voytsekhovsky V.V., Landishev Yu.S., Tseluyko S.S., Zabolotskikh T.V. Hemorrhagic syndrome in clinical practice. Blagoveshchensk: Amur Academy of Sciences; 2014. (in Russian) Frantiscology. Reproduction. Russian journal (Acusherstvo. Ginecologiya. Reprodukciya). 2014; 8(2): 112–5. (in Russian) Golovkina L.L. Platelet antigens and their importance in medicine. Russian journal of Hematology and transfusiology (Gematologia i Transfusiology)a. 2010; 55(4): 24–31. (in Russian) Golovkina L.L., Zotikov E.A. Alloimmunizatsiya to antigens sistem HPA and HLAin hematological patients with multiple transfusions of blood components. New in Transfusiology. Russian journal (Novoe v Transfusiologi). 2003; 34: 12–22. (in Russian) 12–22. (in Russian)
Zeller M. Clinical Guide to Transfusion. Canadian blood services; 2011. https://

- Zeller M. Clinical Guide to Transfusion. Canadian blood services; 2011. https://professionaleducation.blood.ca/en/platelet-transfusion-alloimmunization-and-management-platelet-refractoriness (Aug 1, 2016). Kaufman R.M., Djulbegovic B., Gernsheimer T., Kleinman S., Tinmouth A., Capocelli K., et al. Platelet transfusion: A clinical practice guideline from the AABB. Ann. Inter. Med. 2015; 162(3): 1–18. doi:10.7326/M14-1589. Zarubin M.V., Gubanova M.N., Gaponova T.V., Paramonov I.V., Madzaev S.R., Halzov K.V, et al. Providing efficacy and safety of platelet transfusions. Russian Journal of the National Medical-Surgical Center n.a. N.I. Pirogov (Vestrik Natsionlnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova). 2016; 11(3): 118–25. (in Russian)
 Balashov D.N., Trakhtman P.E. Features of transfusion therapy in patients after hematopoietic stem cell transplantation. Literature review. Oncohematology. Russian journal (Oncogematologiya). 2013; 7(3): 42–6. (in Russian)
 Savchenko V.G., ed. Programmed treatment of patients with aplastic anemia. Programmed treatment of leukemia. Moscow: Hematology Research Center of Russian Academy of Medical Sciences; 2008: 328–42. (in Russian)
 Mikhaylova E.A., Savchenko V.G. Protocol for the treatment of patients with aplastic anemia: combined immunosuppressive therapy. Moscow: Practice; 2012. (in Russian)
 Bevans M.F., Shalabi R.A. Management of patients receiving antithymocyte

- 2012. (in Russian)
 Bevans M.F., Shalabi R.A. Management of patients receiving antithymocyte globulin for aplastic anemia and myelodysplastic syndrome. Clin. J. Oncol. Nurs. 2004; 8(4): 377–82. doi:10.1188/04.CJON.
 Forest S.K., Hod E.A. Management of the platelet refractory patient; Hematology/Oncology Clinics of North America. W.B. Saunders. 2016; 30: 665–77. https://doi.org/10.1016/j.hoc.2016.01.008
 Schiffer C.A., O'Connell B., Lee E.J. Platelet transfusion therapy for alloimmunized patients: selective mismatching for HLA B12, an antigen with variable expression on platelets. Blood. 1989; 74(3): 1172–6.
 Hod E., Schwartz J. Platelet transfusion refractoriness. Br. J. Haematol. 2008; 142(3): 348–60. doi:10.1111/j.1365-2141.2008.07189.x16.
 Golovkina L.L. Genetic restriction of the humoral immune answer. Oncohematology. Russian journal (Oncogematologiya). 2014; 8(2): 58–62. (in Russian)

- (in Russian)
 Pavenski K., Freedman J., Semple J.W. HLA alloimmunization against platelet transfusions: pathophysiology, significance, prevention and management. *Tissue Antigens*. 2012; 79(4): 237–45. doi:10.1111/j.1399-0039.2012.01852.x.
- Wallington T. Essential immunology for transfusion medicine. In: Murphy M., Pamphilon D. *Practical Transfusion Medicine*. London, Blackwell Publishing
- Pamphilon D. Practical Transfusion Medicine. London, Blackwell Publishing Ltd.; 2009: 7–18.
 Glazanova T.V., Gritsaev S.V., Shilova E.R., Pavlova I,E., Chubukina Zh.V., Rozanova O.E., et al. Development of allogenic antibodies to leukocyte and platelet antigens (anti-HLA and anti-HPA) in patients with blood system diseases in the background transfusion of blood components. Russian journal of Hematology and Transfusiology (Gematologia i Transfusiologia). 2015; 60(4): 26–9. (in Russian)
 Mineeva N.V., Gavrovskaya S.V., Krobinets I.I., Pashkova I.A., Bodrova N.N., Sisoeva E.A. The frequency of detection of anti-erythrocyte, antileukocytic, antiplatelet alloantibodies in patients with hematological diseases. Oncohematology. Russian journal (Oncogematologya). 2013; 7(4): 13–7. (in Russian)

- 13–7. (in Russian)
 Mineeva N.V., Krobinets I.I., Blinov M.N., Kapustin S.I. Antigens and antibodies to platelets (review of the literature). *Oncohematology: Russian journal (Oncogematologiya)*. 2013; 7(3): 60–8. (in Russian)
 Manis J.P., Silberstein L.E. Platelet refractoriness: It's not the B-all and end-all. *Blood*. 2016; 127(14): 1740–1. doi:10.1182/blood-2016-02-695437.
 Butina E.V., Zaitseva G.A., Karpov D.A., Tselousova O.M. HLA-sensitization: the risk of posttransfusion complications prevention methods. *Transfusiology. Russian journal*, (*Transfuziologiya*). 2005; 4(6): 52–6. (in Russian) Glazanova T.V., Rozanova O.E., Pavlova I.E., Chubukina Zh.V., Shilova E.R., Bubnova L.N. Effect of hemocomponent therapy on immunity parameters and the formation of alloantibodies in patients with aplastic anemia. *Bulletin of Hematology. Russian journal (Vestnik Gematologii*). 2015; 11(3): 4–8. (in Russian)

- Pashkova I.A., Gilevich I.V., Mineeva N.V. Algorithm of pathogenetic diagnostics of thrombocytopenia. *Kuban Scientific Medical Bulletin. Russian Journal (Kubanskiy Nauchniy Medicinskiy Vestnik)*. 2014; 145(3): 93–9. (in Russian)
 Maschan A.A., Rumyantsev A.G., Kovaleva L.G., Afanasiev B.V., Pospelova T.I., Zaritskiy A.Yu., et al. Guidelines of Russian expert council on diagnostic and

- T.I., Zaritskiy A. Yu., et al. Guidelines of Russian expert council on diagnostic and therapy of patients with primary immune thrombocytopenia. *Oncohematology. Russian journal (Oncogematologiya)*. 2010; 4(3): 36–45. (in Russian) Krasnikova N.A., Poreshina L.P., Golovkina L.L., Zotikov E.A. Identification of antiplatelet antibodies in patients with thrombocytopenia. *New in transfusiology. Russian journal (Novoe v transfuziologii)*. 1999;24: 44-9. (in Russian) Brouk H., Bertrand G., Zitouni S., Djenoun A., Martageix C., Griffi F., Ouelaa H. HPA antibodies in Algerian multitransfused patients: Prevalence and involvement in platelet refractoriness. *Transfus. Apher. Sci.* 2015; 52(3): 295–9. doi:10.1016/j.transci.2014.12.028.

and involvement in placete tenacionness. Transjus. Apner. Sci. 2013, 22(5). 295–9. doi:10.1016/j.transci.2014.12.028.
 Romero-Guzman L.T., Lopez-Karpovitch X., Paredes R., Barrales-Benitez O., Piedras J. Detection of platelet-associated immunoglobulins by flow cytometry for the diagnosis of immune thromboeytopenia: a prospective study and critical review. Haematologica. 2000; 85(6): 627–31.
 He Y., Zhao Y.X., Zhu M.Q., Wu Q., Ruan C.G. Detection of autoantibodies against platelet glycoproteins in patients with immune thromboeytopenic purpura by flow cytometric immunobead array. Clin. Chim. Acta. 2013; 415: 176–80. doi:10.1016/j.cca.2012.10.035.
 Jia Y., Li W., Liu N., Zhang K., Gong Z., Li D., et al. Prevalence of platelet-specific antibodies and efficacy of crossmatch-compatible platelet transfusions in refractory patients. Transf. Med. 2014; 24(6):406–10. doi:10.1111/tme.12157.
 Pavenski K., Rebulla P., Duquesnoy R., Saw C. L., Slichter S. J., Tanael S.. Efficacy of HLA-matched platelet transfusions for patients with hypoproliferative thrombocytopenia: a systematic review. Transfusion. 2013; 53(10): 2230–42. doi:10.1111/trf.12175.
 Sarkar R.S., Philip J., Jain N. Detection and identification of platelet-

53(10): 2230–42. doi:10.1111/trf.12175.
Sarkar R.S., Philip J., Jain N. Detection and identification of platelet-associated alloantibodies by a solid-phase Modified Antigen Capture Elisa (MACE) technique and its correlation to platelet refractoriness in multi platelet concent rate transfused patients. *Indian J. Hematol. Blood Transfus.* 2015; 31(1): 77–84. doi:10.1007/s12288-014-0374-4.
Rachel J.M., Sinor L.T., Tawfic O.W., Summers T.C., Beck M.L., Bayer W.L., Plapp F.V. A solid phase red cell adherence test for platelet cross-matching. *Med. Lab. Sci.* 1985; 42(2): 194–5.
Heal J.M., Blumberg N., Masel D. An evaluation of crossmatching, HLA, and ABO matching for platelet transfusions to refractory patients. *Blood.* 1987; 70(1): 23–30.

70(1): 23-30.

- Kopko P.M., Warner P., Kresie L., Pancoska C. Methods for the selection

- ABO matching for platelet transfusions to refractory patients. *Blood.* 1987; 70(1): 23–30.
 Kopko P.M., Warner P., Kresie L., Pancoska C. Methods for the selection of platelet products for alloimmune-refractory patients. *Transfusion.* 2015; 55(2): 235–44.
 Sayyadi M., Shaiegan M., Zarif M., Vaezi M., Mohammadi S. Platelet transfusion outcome and flow cytometric monocyte phagocytic assay (FMPA). *Arch. Iranian Med.* 2016: 19(6): 426–9.
 Kiefel V., Freitag E., Kroll H., Santoso S., Mueller-Eckhardt C. Platelet autoantibodies (IgG, IgM, IgA) against glycoproteins IIb/IIIa and Ib/IX in patients with thrombocytopenia. *Ann. Hematol.* 1996; 72(4): 280–5.
 He Y., Zhao Y.X. Zhu M.Q., Wu Q., Ruan C.G. Detection of autoantibodies against platelet glycoproteins in patients with immune thrombocytopenic purpura by flow cytometric immunobead array. *Clin. Chim. Acta.* 2013; 415:176–80. doi:10.1016/j.cca.2012.10.035.
 Fletcher C.H., Dom Bourian M.G., Millward P.A. Platelet transfusion for patients with cancer. *Cancer Control.* 2015; 22(1): 47–51.
 Jackman R., Deng X., Bolgiano D., Utter G., Schechterly C., Lebedeva M., et al. Leukoreduction and ultraviolet treatment reduce both the magnitude and the duration of the HLA antibody response. *Transfusion.* 2014; 54(3): 672–80.
 Karpova O.V., Roitman E.V., Ignatova A.A. Evaluation of the quality of platelet concentrate harvested by the apheresis method with the use of a prebath SSP+ solution. *Pediatric Hematology. Oncology and Immunopathology. Russian journal (Voprosi gematologii, oncologii i immunologii v pediatrii). 2014*; 13(2): 20–4. (in Russian)
 Cognasse F., Hamzeh-Cognasse H., Lafarge S., Acquart S., Chavarin P., Courbil R., Garraud O. Donor platelets stored for at least 3 days can elicit activation marker expression by the recipient's blood mononuclear cells: An in vitro study. *Transfusion.* 2009; 49(1): 91–8.
 Golovkina L.L., Kutyina R.M., Zotikov E.A., Kalinin N.N., Shtyreva E.M., Mikha

- idelines on the use of the apeutic apheresis in clinical practice—evidence-based approach from the apheresis applications committee of the American society for apheresis. J. Clin. Apher. 2010; 25(3): 83–177. doi:10.1002/jca.20240. Kalinin N.N. Clinical application of extracorporeal methods of treatment. Moscow: Treckpore Technology; 2006. (in Russian) Mikhaylova E.A., Yadrikhinskaya V.V., Vernyuk M.A., Ustinova E.A., Isaev V.G., Shtyreva E.M., et al. Plasmapheresis and lymphocytapheresis in the complex therapy of aplastic anemia. Moscow, 2000, VIII conference of the Moscow Society of Haemepheresis. 2000; 39: 40. (in Russian) Kiefel V. Reactions Induced by Platelet Transfusions. Transfusion medicine and hemotherapy: offizielles Organ der Deutschen Gesellschaft für Transfusionsmedizin und Immunhamatologie. 2008; 35(5): 354–8. doi:10.1159/000151350.

 British Committee for Standards in Haematology General Haematology
- doi:10.1159/000151350. British Committee for Standards in Haematology General Haematology Task Force. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br. J. Haematol. 2003; 120(4): 574–96. Liu W., Wu D., Hu T., Ye B. Efficiency of treatment with rituximab in platelet transfusion refractoriness: A study of 7 cases. Inter. J. Clin. Exp. Med. 2015; 9(8): 14080-4

8(8): 14080-4.

Поступила 17.11.17 Принята к печати 29.12.17