ОРИГИНАЛЬНЫЕ СТАТЬИ

© КОЛЛЕКТИВ АВТОРОВ 2017

УЛК 616.155.392.08-036.11-085-06:616.34-008.87

Коробова А.Г., Клясова Г.А., Охмат В.А., Кравченко С.К., Паровичникова Е.Н., Савченко В.Г.

КОЛОНИЗАЦИЯ СЛИЗИСТОЙ ОБОЛОЧКИ КИШЕЧНИКА ЭНТЕРОБАКТЕРИЯМИ С ПРОДУКЦИЕЙ β-ЛАКТАМАЗ РАСШИРЕННОГО СПЕКТРА ПРИ ЛЕЧЕНИИ ОСТРЫХ МИЕЛОИДНЫХ ЛЕЙКОЗОВ И ЛИМФОМ

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России, 125167, г. Москва, Россия

Цель исследования – изучить частоту и факторы риска колонизации слизистой оболочки кишечника энтеробактериями с продукцией β-лактамаз расширенного спектра (БЛРС) при лечении острых миелоидных лейкозов (ОМЛ) и лимфом.

Материал и методы. В проспективное исследование (2013–2014 гг.) были включены 98 больных (медиана возраста 43 года), из них 33 больных ОМЛ, 65 больных лимфомами. Период наблюдения составил 6 мес. Мазки со слизистой оболочки прямой кишки брали в первые 2 дня госпитализации, далее каждые 7 дней. Детекцию БЛРС проводили фенотипическими методами, генов резистентности $bla_{\text{тем}}$ и $bla_{\text{ст.м.}}$ – методом ПЦР.

Результаты. Всего было выделено 88 БЛРС-положительных энтеробактерий у 75 (76,5%) больных. Гены $bla_{\text{СТХ-M}}$ были у 69% изолятов, $bla_{\text{ТЕМ}}$ у 49%, оба гена у 36%. Вероятность колонизации кишечника продуцентами БЛРС у больных лимфомами составила 91%, ОМЛ – 84%. Вероятность сохранения колонизации продуцентами БЛРС составила 30,3%. У 13 (39%) из 33 больных вновь возникла колонизации БЛРС-положительными энтеробактериями с медианой в 37 дней. Вероятность возврата колонизации продуцентами БЛРС составила 49,4%. Значимыми факторами риска колонизации слизистой оболочки кишечника БЛРС-положительными бактериями были применение парентерального питания (p = 0,05) и непрерывное пребывание в стационаре (p = 0,002). Медиана непрерывного пребывания этих больных в стационаре составила 70 дней (разброс 64–180 дней). Частота бактериемии, обусловленной продуцентами БЛРС, составила 7% (у 5 из 75) у больных с колонизацией кишечника данными микроорганизмами, и не было ни одного случая у больных без колонизации. Таким образом, больные ОМЛ и лимфомами имели высокую вероятность колонизации слизистой оболочки кишечника БЛРС-положительными энтеробактериями. В течение 6 мес детекция БЛРС не была постоянной у всех больных. Колонизацию БЛРС-положительными бактериями необходимо учитывать при профилактике и выборе антибиотика у больных с фебрильной нейтропенией.

Ключевые слова: мониторинг; колонизация; β-лактамазы расширенного спектра; БЛРС; Enterobacteriaceae; СТХ-М; ТЕМ; острые лейкозы; лимфомы.

Для цитирования: Коробова А.Г., Клясова Г.А., Охмат В.А., Кравченко С.К., Паровичникова Е.Н., Савченко В.Г. Колонизация слизистой оболочки кишечника энтеробактериями с продукцией β-лактамаз расширенного спектра при лечении острых миелоидных лейкозов и лимфом. *Гематология и трансфузиология*. 2017; 62(3): 116-123. DOI: http://dx.doi.org/10.18821/0234-5730-2017-62-3-116-123

Korobova A.G., Klyasova G.A., Okhmat V.A., Kravchenko S.K., Parovichnikova E.N., Savchenko V.G.

INTESTINAL COLONIZATION WITH EXTENDED-SPECTRUM β -LACTAMASE PRODUCING ENTEROBACTERIACEAE IN PATIENTS WITH ACUTE MYELOID LEUKAEMIA AND LYMPHOMA

National Research Center for Hematology, Moscow, 125167, Russian Federation

The aim of this study was to determine the prevalence and risk factors of intestinal colonization with extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) in patients with acute myeloid leukaemia (AML) and lymphoma.

Material and methods. 98 patients (median age of 43 years; 33 – AML, 65 – lymphoma) were included in the prospective study. Follow-up period was lasted for 6 months. Rectal swabs were collected within 2 days of admission and every 7 days further. Presence of ESBL was confirmed by phenotypic tests, genes bla_{TEM} and $bla_{\text{CTX-M}}$ were detected by PCR. A total of 88 ESBL-E were isolated in 75 (76.5%) patients.

Results. Genes $bla_{\text{CTX-M}}$ were detected in 69% of isolates, bla_{TEM} – in 49%, both genes – in 36%. Probability of intestinal colonization with ESBL-E was 91% in patients with lymphoma and 84% - in AML. Probability of persistent ESBL-E carriage was 30.3%. Recurrence of ESBL-E carriage was in 13 (39%) of 33 patients with a median of 37 days. Probability of recurrent ESBL-E colonization was 49.4%. Risk factors for ESBL-E carriage proved to be parenteral nutrition (p = 0.05) and permanent hospital stay (p = 0.002). The median of permanent hospital stay in these patients was 70 days (64–180 days). The rate of ESBL-E bacteremia in patients colonized with subsequent microorganisms was 7% (5/75). No bacteremia cases were in patients without colonization. Patients with AML and lymphoma underwent chemotherapy had a high risk of ESBL-E intestinal colonization. The presence of ESBL carriage was not permanent in all patients for 6 months. ESBL colonization should be considered in choosing antibiotics for prophylaxis and empirical approaches in patients with febrile neutropenia.

Keywords: colonization; extended-spectrum beta-lactamase; ESBL; Enterobacteriaceae; CTX-M; TEM; acute leukemia; lymphoma.

For citation: Korobova A.G., Klyasova G.A., Okhmat V.A., Kravchenko S.K., Parovichnikova E.N., Savchenko V.G. Intestinal colonization with extended-spectrum β -lactamase producing Enterobacteriaceae in patients with acute myeloid leukaemia and lymphoma. *Hematology and Transfusiology. Russian journal (Gematologiya i transfusiologiya).* 2017; 62(3): 116-123. (in Russian). DOI: http://dx.doi.org/10.18821/0234-5730-2017-62-3-116-123

Acknowledgments. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received 19 September 2017
Accented 20 October 2017

В спектре возбудителей инфекционных осложнений у больных гемобластозами в настоящее время отмечается увеличение доли грамотрицательных микроорганизмов и частоты детекции полирезистентных бактерий, среди которых ведущими являются энтеробактерии с продукцией В-лактамаз расширенного спектра (БЛРС). В России по результатам многоцентрового исследования, проведенного в 2003-2009 гг., продукция БЛРС определялась у 41% изолятов Enterobacteriaceae, выделенных из гемокультуры у больных опухолями системы крови [1].

Продукция БЛРС является одним из наиболее распространенных механизмов резистентности у энтеробактерий. Ферменты БЛРС отвечают за гидролиз таких В-лактамных антибиотиков, как цефалоспорины III-IV поколений, которые длительное время составляли основу лечения инфекций, вызванных грамотрицательными бактериями. Выделяют несколько типов БЛРС, среди которых преобладают СТХ-М, TEM, SHV. В настоящее время во всех странах мира, включая Россию, получили широкое распространение ферменты СТХ-М-типа [2, 3].

В развитии инфекционных осложнений у больных гемобластозами преобладает эндогенный путь инфицирования, при котором транслокация микроорганизмов со слизистой оболочки кишечника происходит в кровоток [4]. В этой связи больным проводится селективная деконтаминация кишечника, препаратом выбора является фторхинолон (ципрофлоксацин, офлоксацин) [5]. Однако у больных с колонизацией слизистой оболочки кишечника энтеробактериями с продукцией БЛРС такая профилактика будет недейственной, поскольку клинически подтвержденную эффективность в отношении продуцентов БЛРС проявляют лишь карбапенемы.

Факторами риска колонизации слизистой оболочки кишечника продуцентами БЛРС являются длительное пребывание в стационаре или в отделении реанимации, выполнение инвазивных медицинских манипуляций, применение антибиотиков, преклонный возраст [6-8]. Как правило, у больных гемобластозами в период проведения химиотерапии (ХТ) присутствует сразу несколько факторов риска, индуцирующих колонизацию слизистой оболочки кишечника БЛРС-положительными бактериями.

Цель нашего исследования - изучение частоты выявления и факторов риска колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС у больных острыми миелоидными лейкозами (ОМЛ) и лимфомами в процессе реализации курсов XT.

Материал и методы

Исследование было проведено с апреля 2013 г. по ноябрь 2014 г. в ФГБУ «Гематологический научный центр» (ныне «Национальный медицинский исследовательский центр гематологии» – НМИЦ гематологии) Минздрава России и включало

Для корреспонденции:

Клясова Галина Александровна, доктор мед. наук, профессор, заведующая научно-клинической лабораторией клинической бактериологии, микологии и антибиотической терапии ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России, 125167, г. Москва, Россия. E-mail: klyasova.g@blood.ru.

For correspondence: Klyasova Galina A., MD, PhD, prof., head of clinical-research laboratory of clinical bacteriology, mycology and antibiotic stewardship of the National Research Center for Hematology, Moscow, 125167, Russian Federation. E-mail: klyasova.g@blood.ru

Information about authors:

Koroboba A.G., http://orcid.org/0000-0002-6268-5282, ResearcherID: M-6469-2014; Klyasova G.A., http://orcid.org/0000-0001-573-5763, ResearcherID: M-6329-2014; Okhmat V.A., http://orcid.org/0000-0002-6195-4508, ResearcherID: M-7089-2014; Kravchenko S.K., http://orcid.org/0000-0002-6778-997X; Parovichnikova E.N., http://orcid.org/0000-0001-6177-3566; Savchenko V.G., http://orcid.org/0000-0001-8188-5557. M-6469-2014;

больных ОМЛ и лимфомами с впервые установленными диагнозами или с рецидивом. Наблюдение за больными проводили в течение 6 мес. У всех больных брали мазки со слизистой оболочки прямой кишки в течение первых 2 дней госпитализации в НМИЦ гематологии, далее каждые 7±2 дня во время пребывания больного в стационаре и при очередной госпитализации. Колонизацией энтеробактериями с продукцией БЛРС считали хотя бы однократное выделение продуцентов БЛРС в мазках со слизистой оболочки кишечника. Полагали, что произошла элиминация БЛРС-положительных бактерий со слизистой оболочки кишечника, если данные микроорганизмы не определяли в трех последовательно взятых мазках.

Для выявления энтеробактерий с продукцией БЛРС мазки помещали на хромогенную селективную среду CHROMagarTMESBL ("CHROMagar", Франция), предназначенную для прямого выделения БЛРС-положительных бактерий, затем инкубировали в термостате при температуре 36°C в течение 18-24 ч. Идентификацию микроорганизмов проводили методом времяпролетной масс-спектрометрии (MALDI-TOF-MS) на анализаторе Microflex ("Bruker Daltonics", Германия). Продукцию БЛРС у энтеробактерий, полученных на хромогенной селективной среде CHROMagar™ESBL, подтверждали методом «двойных дисков» и дополнительно путем сравнения минимальной подавляющей концентрации цефалоспоринов III поколения (цефотаксима и цефтазидима) и их комбинаций с клавулановой кислотой [9, 10]. Для внутреннего контроля качества использовали референтные штаммы Escherichia coli ATCC®25922 и Klebsiella pneumoniae ATCC®700603.

Наличие генов резистентности bla_{TEM} и $bla_{\text{CTX-M}}$, кодирующих наиболее распространенные типы β-лактамаз, определяли методом ПЦР в режиме реального времени. Для этого использовали наборы реагентов для выявления генов *ТЕМ* и *СТХ-М* («Литех», Россия).

На этапе планирования исследования был разработан информационный протокол для сбора информации о больных. Обработку и анализ данных осуществляли с помощью процедур статистического пакета SAS v9.13 и программы Statistica. В работе использовали методы описательной статистики, частотного и событийного анализа. Для сравнения качественных признаков применяли критерий χ^2 . При однофакторном анализе для оценки влияния факторов на вероятность развития события использовали метод соотношения шансов (Odds Ratio, OШ). Оценку распределения времени появления колонизации в процессе реализации XT проводили по методике Каплана-Майера. Оценку статистической значимости различий проводили с помощью критерия Log-rank. Статистически значимыми считали различия при степени вероятности безошибочного прогноза 95% ($p \le 0.05$). Событийный анализ для выявления вероятности колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС был проведен у всех пациентов, включенных в исследование, а частотный анализ по определению факторов риска колонизации выполняли только у больных, получивших 2 и 4 курса XT.

Результаты

В исследование были включены 98 пациентов, из них 33 (34%) больных ОМЛ и 65 (66%) больных лимфомами. Гемобластоз был впервые диагностирован у 94 (96%) больных, а 4 (4%) больных (1 ОМЛ и 3 лимфомами) были госпитализированы с рецидивом заболевания, возникшим через 1 год и позже после констатации ремиссии. Характеристика пациентов в течение 6 мес наблюдения представлена в табл. 1. Медиана возраста больных составила 43 года (разброс от 17 до 83 лет). Больные лимфомами были статистически значимо старше больных ОМЛ (медиана возраста 47 лет против 35 лет, p = 0.01).

ХТ была проведена у 91 (93%) больного. Курсы ХТ не проводили 7 больным, из них у 4 по причине отказа от лечения, а у 3 в связи с летальным исходом. За 6 мес наблюдения 74% больных ОМЛ было выполнено 3 курса XT, а 87% больных лимфомами – от 4 до 8 курсов XT. У больных ОМЛ основными были курсы XT по программе «7+3» (94%), у больных лимфомами – «блоковая терапия» по протоколу NHL-BFM-90 или mNHL-BFM-90 (48%) и EPOCH (37%) [11].

Таблица 1 Характеристика больных ОМЛ и лимфомами, включенных в исследование в течение 6 мес наблюдения

Параметр	ОМЛ	Лимфома	Всего
Число больных при поступлении	33	65	98
Соотношение мужчин и женщин	12:21	30:35	42:56
Возраст, медиана (диапазон), годы	35 (17–83)	47 (18–76)	43 (17–83)
Число больных, имевших колонизацию энтеробактериями с продукцией БЛРС, при первой госпитализации в центр	8 (24%)	18 (28%)	26 (27%)
Число больных, получивших 1-й курс XT	31	60	91
Число больных, выбывших из исследования до 1-го курса XT	2	5	7
Причины выбывания из исследования:			
отказ от лечения	1	3	4
летальный исход	1	2	3
Схемы ХТ:			
«7+3»	29 (94%)	_	_
блоковая терапия (NHL-BFM-90, mNHL-BFM-90)	_	29 (48%)	_
EPOCH, R-EPOCH, R-Da-EPOCH	_	22 (37%)	_
СНОР и R-СНОР	_	8 (13%)	_
другие курсы ХТ	2 (6%)	1 (2%)	=
Число больных, получивших 2-й курс XT	25	55	80
Число больных, выбывших из исследования до 2-го курса XT	6	5	11
Причины выбывания из исследования:	V	J	
отказ от лечения	1	2	3
летальный исход	5	3	8
Медиана наблюдения за больными, дни	37 (23–69)	21 (19–29)	Ö
***	23 (23–09)	54	- 77
Число больных, получивших 3-й курс XT Число больных, выбывших из исследования до 3-го курса XT	2		3
	2	1	3
Причины выбывания из исследования:	1	1	2
летальный исход	1	1	2
завершено наблюдение	1 76 (61, 126)	45 (20, (2)	1
Медиана наблюдения за больными, дни	76 (61–126)	45 (38–62)	-
Число больных, получивших 4-й курс XT	16	52	68
Число больных, выбывших из исследования до 4-го курса XT	7	2	9
Причины выбывания из исследования:			•
отказ от лечения	1	1	2
летальный исход	1	1	2
завершены курсы ХТ	5*		5
Медиана наблюдения за больными, дни	123(104–184)	68 (59–118)	-
Число больных, получивших 5-й курс XT	1	46	47
Число больных, выбывших из исследования до 5-го курса XT	15	6	21
Причины выбывания из исследования:			
завершено наблюдение	15		21
завершены курсы ХТ		6	
Медиана наблюдения за больными, дни	175	87 (76–175)	_
Число больных, получивших 6-й курс XT	0	41	41
Число больных, выбывших из исследования до 6-го курса XT	1	5	6
Причины выбывания из исследования			
завершено наблюдение	1		6
завершены курсы ХТ		5	
Медиана наблюдения за больными, дни	_	109 (100–164)	-
Число больных, получивших 7-й курс XT	0	13	13
Число больных, выбывших из исследования до 7-го курса XT	_	28	28
Причины выбывания из исследования			
завершены курсы XT	_	28	28
Медиана наблюдения за больными, дни	_	138 (124–166)	_

 Π р и м е ч а н и е. * — проведена трансплантация стволовых гемопоэтических клеток.

Таблица 2 Тип β-лактамаз у энтеробактерий с продукцией БЛРС, выделенных со слизистой оболочки кишечника у больных ОМЛ и лимфомами, в течение 6 мес наблюдения

	Энтеробактерии с продукцией БЛРС							
Гены β-лактамаз	E. coli (n = 52)		<i>K. pneumoniae</i> (<i>n</i> = 21)		другие* (n = 15)		всего (n = 88)	
	n	%	n	%	n	%	n	%
TEM	6	12	4	19	1	7	11	13
CTX-M	19	37	4	19	6	40	29	33
CTX-M+TEM	18	35	9	43	5	33	32	36
Bcero TEM	24	46	13	62	6	40	43	49
Всего СТХ-М	37	71	13	62	11	73	61	69
Не выявлены	9	17	4	19	3	20	16	18

 Π римечание. * — Citrobacter spp. (n = 6), Enterobacter spp. (n = 4), K. oxytoca (n = 4), R. ornitinolytica (n = 1).

СТХ-М и ТЕМ

За период наблюдения энтеробактерии — продуценты БЛРС были выявлены у 75 (76,5%) из 98 больных. Из них у 62 (83%) БЛРС-положительные бактерии были представлены одним видом, а у 13 (17%) — сочетанием двух видов продуцентов БЛРС. Всего было выделено 88 изолятов энтеробактерий с продукцией БЛРС. Ведущими микроорганизмами были *E. coli* (59%), далее следовали *K. pneumoniae* (24%), реже выявляли *Citrobacter* spp. (7%), *Enterobacter* spp. (4,5%), *Klebsiella oxytoca* (4,5%) и *Raoultella ornithinolytica* (1%). Видовое разнообразие было идентичным у больных ОМЛ и лимфомами.

У всех изолятов энтеробактерий с продукцией БЛРС было проведено определение генов $bla_{\text{СТX-M}}$ и $bla_{\text{ТЕМ}}$. Наличие хотя бы одного из исследуемых генов отмечалось у 72 (82%) из 88 изолятов, сочетания генов – у 36% изолятов (табл. 2). Гены $bla_{\text{СТX-M}}$ преобладали и были выявлены у 69% изолятов. Преобладание СТХ-М типа БЛРС отмечалось у изолятов E. coli (71%), в то время как у изолятов E. preumoniae с одинаковой частотой (62%) обнаруживали как СТХ-М-тип, так и ТЕМ. preumoniae изолятов E. preumoniae изолятов E. preumoniae изолятов E. preumoniae изолятов E. preumoniae преобладало сочетание генов (43% против 19%). Исследуемые гены не были определены у 18% изолятов, с одинаковой частотой у E. preumoniae (19%).

Вероятность колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС у больных ОМЛ и лимфомами в процессе реализации XT за 6 мес наблюдения представлена на **рис.** 1. За анализируемый период вероятность колонизации в группе больных лимфомами составила 91%, а в группе больных ОМЛ — 84%. Медиана детекции колонизации продуцентами БЛРС у больных лимфомами — 25 дней (разброс от 7 до 175 дней), а ОМЛ — 68 дней (разброс от 5 до 163 дней) (p = 0,23). Основная часть «новых» случаев колонизации БЛРСположительными бактериями была выявлена до 96-го дня наблюдения, в более поздний период только у 5 больных.

При проведении курсов XT было отмечено возрастание доли больных с колонизацией слизистой оболочки кишечника продуцентами БЛРС (рис. 2). Уже при первой госпитализации в клинику нашего центра БЛРС-положительные бактерии со слизистой оболочки кишечника были выявлены у 26 (27%) из 98 больных. Детекция продуцентов БЛРС возросла у больных ОМЛ с 24% при поступлении до 81% к 4-му курсу XT, а у больных лимфомами – с 28 до 69% соответственно. Значимый прирост

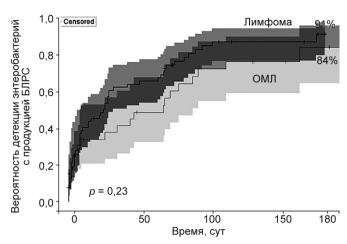


Рис. 1. Вероятность детекции энтеробактерий с продукцией БЛРС в процессе мониторинга у больных ОМЛ и лимфомами в течение 6 мес наблюдения.

колонизации энтеробактериями с продукцией БЛРС у больных лимфомами с 28 до 51% был отмечен к моменту проведения 2-го курса XT (p = 0,009), а у больных ОМЛ с 40 до $70\% - \kappa$ 3-му курсу XT (p = 0,04).

В течение 6 мес наблюдения у 33 (44%) из 75 больных, имевших колонизацию слизистой оболочки кишечника энтеробактериями с продукцией БЛРС, была отмечена элиминация продуцентов БЛРС с медианой в 20 дней (разброс от 5 до 133 дней). Вероятность сохранения энтеробактерий с продукцией БЛРС на слизистой оболочке прямой кишки в течение 6 мес равнялась 30,3%, причем у больных лимфомами этот показатель был выше, чем у больных ОМЛ (53,4% против 15,7%) (рис. 3). Основная часть случаев элиминации продуцентов БЛРС со слизистой оболочки кишечника у больных лимфомами наблюдалась в течение первых 2 мес после их детекции, а далее этот показатель выходил на плато, в то время как у больных ОМЛ отмечалось постепенное уменьшение колонизации продуцентами БЛРС в течение всего периода наблюдения (6 мес). У 13 (39%) из 33 больных была возобновлена детекция энтеробактерий с продукцией БЛРС со слизистой оболочки кишечника с медианой в 37 дней (разброс от 14 до 90 дней). Вероятность реколонизации БЛРС-положительными бактериями составила 49,4%, и этот показатель был ниже у больных ОМЛ в сравнении с больными лимфомами (36,5% против 57,2%) (рис. 4).

Далее были изучены факторы риска колонизации слизистой оболочки кишечника энтеробактериями с про-

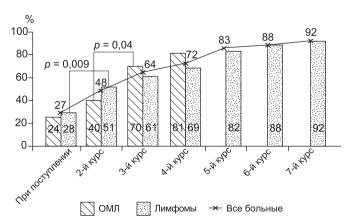


Рис. 2. Динамика детекции энтеробактерий с продукцией БЛРС на курсах XT в течение 6 мес наблюдения.

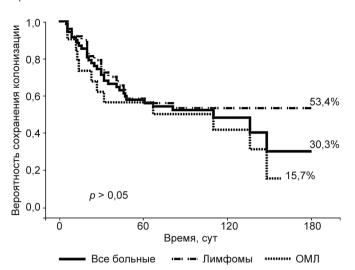


Рис. 3. Вероятность сохранения колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС у больных ОМЛ и лимфомами в течение 6 мес наблюдения.

дукцией БЛРС (табл. 3). У каждого больного в процессе проведения курсов XT был в наличии хотя бы один фактор. Частота регистрации более 50% была отмечена для таких факторов, как установка центрального венозного катетера (ЦВК) (85%), применение антибиотиков (84%), гранулоцитопения (84%). У больных ОМЛ в сравнении с больными лимфомами значимо чаще регистрировали гранулоцитопению (97% против 75%, p=0,008), преобладало применение антибиотиков (100% против 75%, p=0,002) и пребывание в отделении реанимации и интенсивной терапии (ОРИТ) (55% против 28% соответственно, p=0,009). При событийном анализе не было обнаружено факторов, статистически значимо влияющих на время детекции энтеробактерий с продукцией БЛРС у больных ОМЛ и лимфомами.

Факторы риска, индуцирующие колонизацию слизистой оболочки кишечника энтеробактериями с продукцией БЛРС, были изучены перед 2-м и 4-м курсами ХТ. Из анализа были исключены больные с детекцией продуцентов БЛРС при поступлении в стационар. Частотный анализ факторов риска, зарегистрированных от дня первой госпитализации в наш центр и до проведения 2-го курса ХТ, был выполнен у 59 пациентов (17 больных ОМЛ и 42 больных лимфомами), из них у 17 (29%) имелась ко-

Рис. 4. Вероятность реколонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС у больных ОМЛ и лимфомами после их элиминации в течение 6 мес наблюдения.

Таблица 3 Факторы риска, индуцирующие колонизацию слизистой оболочки прямой кишки энтеробактериями с продукцией БЛРС,

у больных ОМЛ и лимфомами в течение 6 мес наблюдения								
Фактор риска	Всего, n = 98		ОМЛ, n = 33		Лимфома, n = 65		p	
	n	%	n	%	n	%		
Возраст старше 50 лет	34	35	7	21	27	42	0,05	
Сопутствующие заболевания	40	41	9	27	31	47	0,05	
Наличие ЦВК	83	85	31	94	52	80	0,07	
Наличие гранулоцитопении	82	84	32	97	49	75	0,008	
Применение антибиотиков	82	84	33	100	49	75	0,002	
Диарея	39	40	9	27	30	46	0,07	
Пребывание в ОРИТ	36	37	18	55	18	28	0,009	
Абдоминальные операции	5	5	2	6	3	5	0,76	
Парентеральное	5	5	1	3	4	6	0,51	

лонизация слизистой оболочки кишечника продуцентами БЛРС (табл. 4). Перед 2-м курсом ХТ колонизация определялась чаще у больных лимфомами (26%), чем у больных ОМЛ (8%; p = 0.066). Энтеробактерии с продукцией БЛРС были обнаружены у всех больных, которым проводили парентеральное питание (100% против 25%; p = 0.05), хотя количество таких пациентов было невелико (n = 3). Перевод больного в ОРИТ не относился к значимым факторам риска колонизации слизистой оболочки кишечника продуцентами БЛРС, однако медиана длительности пребывания в реанимации была продолжительнее у больных с колонизацией этими бактериями в сравнении с больными без колонизации (32 дня против 5 дней; p = 0.07). Статистически значимых различий по факторам риска у больных ОМЛ и у больных лимфомами за анализируемый период не выявлено.

питание

Частотный анализ факторов риска колонизации БЛРС-положительными бактериями, зарегистрированных от дня первой госпитализации в НМИЦ гематологии и до проведения 4-го курса XT, был выполнен у 51 больного (у 11 больных ОМЛ и у 40 больных лимфомами), из них у 32 (63%) определялась колонизация слизистой оболочки кишечника энтеробактериями с продукцией БЛРС (табл. 5). Значимым фактором риска, оказавшим влияние на детекцию продуцентов БЛРС, было непрерывное пребывание больных в стационаре до 4-го курса ХТ. Детекция БЛРС-положительных бактерий со слизистой оболочки прямой кишки наблюдалась у всех больных, находившихся постоянно в стационаре к моменту проведения 4-го курса XT, и только у половины, наблюдавшихся амбулаторно в перерывах между курсами XT (100% против 51%; ОШ 2,85; p = 0,002). Медиана непрерывного пребывания в стационаре у этой когорты больных составила 70 дней (64–180 дней). При анализе факторов риска колонизации энтеробактериями с продукцией БЛРС по нозологическим формам было определено, что у больных лимфомами значимым был тот же показатель, что и в общей группе больных, - это непрерывное пребывание в стационаре (100% против 48%; p = 0.005). Медиана непрерывного пребывания в стационаре у больных лимфомами составила 66 дней (64-81 дней). У больных ОМЛ не выявлено значимых факторов риска, влияющих на детекцию продуцентов БЛРС.

Таблица 4

Факторы риска колонизации слизистой оболочки прямой кишки энтеробактериями с продукцией БЛРС, регистрируемые от первой госпитализации в НМИЦ гематологии до проведения 2-го курса XT, у больных ОМЛ и лимфомами

Фактор риска	Колонизация эн продукцией БЛІ от анализиру	ОШ (95% ДИ)	p	
	есть фактор	нет фактора		
Диагноз «лимфома»	15 (36%) из 42	2 (12%) из 17	4,1 (0,84–20,74)	0,066
Возраст 50 лет и старше	3 (19%) из 16	14 (33%) из 43	0,48 (0,12–1,95)	0,3
Наличие ЦВК	9 (26%) из 35	8 (33%) из 24	0,69 (0,22–2,16)	0,52
Наличие грану- лоцитопении	13 (28%) из 46	4 (31%) из 13	0,89 (0,23–3,39)	0,86
Применение антибиотиков	13 (30%) из 44	4 (27%) из 15	1,15 (0,31–4,29)	0,83
Диарея	6 (43%) из 14	11 (24%) из 45	2,3 (0,66–8,16)	0,18
Пребывание в ОРИТ	2 (20%) из 10	15 (31%)из 49	0,57 (0,11–2,99)	0,49
Парентеральное питание	3 (100%) из 3	14 (25%) из 56	_	0,05
Непрерывное пребывание в стационаре	5 (25%) из 20	12 (31%) из 39	0,75 (0,22–2,54)	0,64

У 14 (14%) из 98 больных в течение 6 мес развилась бактериемия, вызванная энтеробактериями. Частота бактериемии, обусловленной БЛРС-положительными бактериями, составила 7% (5 из 75) у больных с колонизацией слизистой оболочки кишечника этими микроорганизмами, при этом не было выявлено ни одного случая у больных без колонизации этими бактериями (0 из 23; p = 0.2).

Обсуждение

Наше исследование продемонстрировало высокую вероятность колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС у больных гемобластозами в период реализации XT в течение 6 мес наблюдения, которая составила 91% у больных лимфомами и 84% у больных ОМЛ, причем у 27% больных колонизацию регистрировали уже при первом поступлении в стационар. В процессе реализации курсов XT нами было отмечено значимое увеличение доли больных с колонизацией слизистой оболочки кишечника продуцентами БЛРС перед 4-м курсом XT – у больных ОМЛ с 24 до 81% ($p=0{,}0002$) и у больных лимфомами с 28 до 69% (p < 0.0001). По данным литературы, детекция БЛРСположительных бактерий является вариабельной, однако наблюдается регистрация продуцентов БЛРС среди энтеробактерий при поступлении в стационар и увеличение их количества во время курсов XT или пребывания в клинике. По результатам исследования, включавшего гематологических и онкологических больных из университетского медицинского центра в Германии [12], колонизация слизистой оболочки прямой кишки продуцентами БЛРС при поступлении в стационар определялась у 17.5% (90 из 513) больных. В другом исследовании [13] детекция таких микроорганизмов у больных ОМЛ была несколько выше – у 38% (17 из 45) до начала курсов ХТ. По данным еще одного исследования [14], появление колонизации слизистой оболочки кишечника продуцентами БЛРС в процессе проведения ХТ было отмечено у 17(27%) из 63

Таблица 5

Факторы риска колонизации слизистой оболочки прямой кишки энтеробактериями с продукцией БЛРС, регистрируемые от первой госпитализации в НМИЦ гематологии до проведения 4-го курса ХТ, у больных ОМЛ и лимфомами

Фактор риска	Колонизация эн с продукцией БЈ сти от анализир	ОШ (95% ДИ)	p	
	есть фактор	нет фактора		
Диагноз «лимфома»	24 (60%) из 40	8 (73%) из 11	0,56 (0,13–2,45)	0,44
Возраст старше 50 лет	7 (50%) из 14	25 (68%) из 37	0,48 (0,14–1,68)	0,25
Наличие ЦВК	25 (66%) из 38	7 (54%) из 13	1,65 (0,46–5,93)	0,44
Наличие грану- лоцитопении	23 (62%) из 37	9 (64%) из 14	0,91 (0,25–3,28)	0,89
Применение антибиотиков	20 (59%) из 34	12 (71%) из 17	0,59 (0,17–2,07)	0,41
Диарея	7 (58%) из 12	25 (64%) из 39	0,78 (0,21–2,94)	0,72
Пребывание в ОРИТ	7 (38%) из 9	25 (59%) из 42	2,38 (0,44–12,87)	0,3
Парентеральное питание	1 из 1	31 (62%) из 50	-	0,43
Непрерывное пребывание в стационаре	12 (100%) из 12	20 (51%) из 39	2,85 (0,67–12,15)	0,002

больных гемобластозами, не имевших эти бактерии при поступлении. Сопоставимые результаты были получены и в другом исследовании [15], в котором зарегистрировали увеличение случаев детекции БЛРС-положительных бактерий у 154 больных гемобластозами с 14,3% при поступлении до 31,8% на момент завершения лечения.

Среди продуцентов БЛРС, выделенных со слизистой оболочки кишечника, превалировали $E.\ coli\ и$ $K.\ pneumoniae$ с продукцией СТХ-М β -лактамаз (71 и 62% соответственно). Другие исследователи [3] также отметили преобладание генов $bla_{\text{СТX-M}}$ у энтеробактерий с продукцией БЛРС, причем частота обнаружения их у изолятов $E.\ coli\ и$ $K.\ pneumoniae$ была выше и составила 90 и 89% соответственно.

По нашим данным, основная часть случаев колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС была зарегистрирована до 96-го дня наблюдения, при этом медиана обнаружения продуцентов БЛРС у больных лимфомами составила 25 дней, в то время как у больных $OM\bar{J} - 68$ дней. В литературе представлено ограниченное число длительных мониторинговых исследований по временным характеристикам детекции и доли больных с колонизацией слизистой оболочки кишечника БЛРС-положительными микроорганизмами во время госпитализации. По данным разных авторов, среднее время пребывания больных в стационаре до момента детекции колонизации этими бактериями составляло от 11 до 67 дней [16]. В исследовании из Израиля продолжительность наблюдения за больными составила только 2 нед. однако колонизация слизистой оболочки кишечника продуцентами БЛРС возросла с 8% (у 13 из 167) при поступлении до 33% (у 4 из 12) к 14-му дню госпитализации [17].

За анализируемые 6 мес колонизация слизистой оболочки кишечника энтеробактериями с продукцией БЛРС была выявлена у 75 больных ОМЛ и лимфомами, однако у 33 (44%) из них в ходе дальнейшего наблюдения отмечалась элиминация этих микроорганизмов. Только у 30,3%

больных колонизация продуцентами БЛРС сохранялась в течение всего анализируемого периода. В других работах изучали длительность колонизации БЛРС-положительными бактериями после их обнаружения. Е. Titelman и соавт. [18] отметили, что колонизация сохранялась у 51 (84%) из 61 больного в течение 1 месяца, у 36 (66%) – 3 мес, у 31 (55%) – 6 мес, у 26 (43%) –12 мес наблюдения. Другие авторы оценивали длительность колонизации БЛРСположительными бактериями после выписки из стационара. Исследователи доказали, что значительно более продолжительный период колонизации наблюдался у больных, которые продолжали принимать антибиотики после выписки из стационара (154 против 56 дней; p = 0.04) [19]. У 13 (39%) из 33 больных в нашем исследовании была отмечена реколонизация энтеробактериями с продукцией БЛРС. Возобновление детекции БЛРС-положительных бактерий со слизистой оболочки кишечника можно объяснить продолжением воздействия факторов риска, индуцирующих колонизацию слизистой оболочки кишечника энтеробактериями с продукцией БЛРС, поскольку больным продолжали проводить курсы XT.

При частотном анализе факторов риска колонизации слизистой оболочки кишечника продуцентами БЛРС, проведенном перед 2-м курсом XT, значимой была необходимость парентерального питания. Отсутствие влияния этого фактора перед 4-м курсом ХТ можно объяснить малым количеством больных, получавших парентеральное питание на этом этапе анализа (n = 1). Другим значимым фактором риска было непрерывное пребывание больных в стационаре до момента проведения 4-го курса XT. Детекция продуцентов БЛРС со слизистой оболочки прямой кишки наблюдалась у всех больных, находившихся постоянно в стационаре к моменту проведения 4-го курса ХТ, и только у половины, наблюдавшихся амбулаторно в перерывах между курсами ХТ (100% против 51%; ОШ 2,85; p = 0,002). Значение длительности пребывания больных в стационаре в появлении колонизации слизистой оболочки кишечника БЛРС-положительными бактериями было отмечено и другими исследователями. В исследовании G. Bisson и соавт. [6] длительность госпитализации была значимо больше у больных с колонизацией, чем у больных без колонизации продуцентами БЛРС (23 дня против 8 дней соответственно; p = 0.01). В другой работе значимым фактором риска колонизации слизистой оболочки кишечника энтеробактериями с продукцией БЛРС была длительность пребывания в стационаре более 21 дня (p < 0.001) [20].

В работе, опубликованной нами ранее [21], значимыми факторами риска колонизации слизистой оболочки кишечника у больных ОМЛ и лимфомами при поступлении в стационар были возраст больного 50 лет и более и перевод из другого стационара, а у больных ОМЛ значимым было проживание в других регионах, исключая Москву. В данной работе такой показатель как возраст больного не был статистически значимым для колонизации БЛРСположительными бактериями в процессе реализации XT, вероятно, по той причине, что у значительного числа больных старшего возраста (38%) детекция продуцентов БЛРС со слизистой оболочки кишечника уже была определена при первом поступлении в стационар. Многие исследователи отмечают лечение β-лактамными антибиотиками и фторхинолонами как значимый фактор риска, индуцирующий колонизацию продуцентами БЛРС [22]. Мы не выявили существенного значения антибиотиков в колонизации энтеробактериями с продукцией БЛРС. Объяснением этому может быть особенность выбранной когорты пациентов, поскольку данный фактор был доминирующим у всех больных (более 80%).

Также следует отметить, что все случаи бактериемии, вызванной энтеробактериями с продукцией БЛРС, были только у больных с колонизацией слизистой оболочки кишечника идентичными по виду продуцентами БЛРС. Сопоставимые данные были получены в исследовании В. Liss и соавт. [12], в котором энтеробактерии с продукцией БЛРС в образцах кала были определены у 90 (17,5%) из 513 больных гемобластозами и солидными опухолями. Бактериемия, вызванная продуцентами БЛРС, развилась у 6 (6,6%) из 90 больных с колонизацией слизистой оболочки кишечника и только у 2 (0,5%) из 423 больных без колонизации (ОШ 4,5). По результатам другого проспективного исследования [23], проведенного в нашем центре с 2013 по 2015 г., частота бактериемии, вызванной энтеробактериями с продукцией БЛРС, у больных ОМЛ с колонизацией слизистой оболочки кишечника этими микроорганизмами составила 7,5% (5 из 68 случаев), и не было случаев бактериемии, вызванной продуцентами БЛРС, у больных без колонизации этими бактериями (0 из 105 случаев; p = 0,009). Эти исследования демонстрируют, что у больных с колонизацией БЛРС-положительными бактериями имеется более высокий риск развития инфекций, вызванных данными бактериями, в сравнении с больными без колонизации. Данный факт был учтен в рекомендациях ECIL-4 (European Conference on Infections in Leukaemia) [24], согласно которым следует принимать во внимание колонизацию слизистой оболочки кишечника продуцентами БЛРС у тяжелых больных с фебрильной нейтропенией при выборе антибиотиков для лечения.

У больных ОМЛ и лимфомами имеется высокая вероятность колонизации слизистой оболочки прямой кишки энтеробактериями с продукцией БЛРС, которая возрастает в ходе реализации XT, причем у части больных продуценты БЛРС определяются при первой госпитализации. Значимыми факторами риска колонизации слизистой оболочки кишечника БЛРС положительными энтеробактериями были необходимость применения парентерального питания к моменту проведения 2-го курса XT и непрерывное пребывание в стационаре – к 4-му курсу ХТ. Детекция продуцентов БЛРС не была постоянной у всех больных в течение 6 мес наблюдения. У одних больных они определялись постоянно, у других происходила их элиминация, у части – наблюдалась реколонизация через некоторый временной промежуток. Все случаи бактериемии, вызванные энтеробактериями с продукцией БЛРС, возникали у больных, имевших колонизацию слизистой оболочки кишечника этими бактериями.

Таким образом, у всех больных перед назначением им фторхинолона для профилактики необходимо проводить исследование со слизистой оболочки прямой кишки с целью выявления колонизации энтеробактериями с продукцией БЛРС, и профилактическое назначение фторхинолона будет оптимальным только у больных без колонизации продуцентами БЛРС. Факт отсутствия колонизации слизистой оболочки прямой кишки энтеробактериями-продуцентами БЛРС у больных, ранее колонизированных этими микроорганизмами, необходимо подтверждать несколькими последовательными исследованиями. У больных с персистирующей фебрильной нейтропенией и отсутствием микробиологического подтверждения инфекции из значимых локусов следует принимать во внимание колонизацию слизистой оболочки кишечника энтеробактериями с продукцией БЛРС при модификации противомикробной терапии и включать карбапенемы в режимы лечения.

Финансирование. Исследование не имело спонсорской поддержки. **Конфликт интересов**. Авторы заявляют об отсутствии конфликта интересов.

ЛИТЕРАТУРА

- Клясова Г.А. Антимикробная терапия. В кн.: Савченко В.Г., ред. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. М.: Практика; 2012: 827–54.
 Прямчук С.Д., Фурсова Н.К., Абаев И.В., Ковалев Ю.Н., Шиш-
- Прямчук С.Д., Фурсова Н.К., Абаев И.В., Ковалев Ю.Н., Шишкова Н.А., Печерских Э.И. и др. Генетические детерминанты устойчивости к антибактериальным средствам в нозокомиальных штаммах Escherichia coli, Klebsiella spp. и Enterobacter spp., выделенных в России в 2003-2007 гг. Антибиотики и химиотерапия. 2010; 55(9–10): 3–10.
- Определение чувствительности микроорганизмов к антибактериальным препаратам (Методические указания МУК 4.21890-04). Клиническая микробиология и антимикробная химиотералия. 2004: 6: 306-59
- Савченко В.Г., ред. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. М.: Практика; 2012.
- Охмат В.А., Коробова А.Г., Паровичникова Е.Н., Троицкая В.В., Клясова Г.А. Раннее прекращение антимикробной терапии у больных с первичными острыми миелобластными лейкозами до завершения периода гранулоцитопении. Гематология и трансфузиология. 2015; 60(3): 4–10.
- Клясова Г.А., Коробова А.Г., Фролова И.Н., Охмат В.А., Куликов С.М., Паровичникова Е.Н. и др. Детекция энтеробактерий с продукцией бета-лактамаз расширенного спектра у больных острыми миелоидными лейкозами и лимфомами при поступлении в стационар. Гематология и трансфузиология. 2016; 61(1): 25–32.
- Охмат В.А., Клясова Г.А., Коробова А.Г., Паровичникова Е.Н., Федорова А.В., Троицкая В.В. и др. Следует ли назначать карбапенемы всем больным с фебрильной нейтропенией и колонизацией энтеробактериями с продукцией β-лактамаз расширенного спектра? Онкогематология. 2016; 11(3): 49–57.

Остальные источники литературы см. в References.

REFERENCES

- Klyasova G.A. Antimicrobial therapy. In: Savchenko V.G., ed. *Program treatment of blood system diseases*. Moscow: Praktika; 2012: 829–53. (in Russian)
- Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrobial Agents and Chemotherapy 2004; 48(1): 1–14. DOI: 10.1128/AAC.48.1.1-14.2004. PMID: 14693512.
- Pryamchuk S.D., Fursova N.K., Abaev I.V. Kovalev Yu.N., Shish-kova N.A., Pecherskikh E.I., et al. Genetic Determinants of Anti-bacterial Resistance Among Nosocomial Escherichia coli Klebsiella spp., and Enterobacter spp. Isolates Collected in Russia within 2003–2007. Antibiotics and chemotherapy. Russian Journal (Antibiotici i chimotherapiya). 2010; 55(9–10): 3–10. (in Russian)
- Blijlevens N.M., Donnelly J.P., De Pauw B.E. Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplant. 2000; 25(12): 1269–78. doi:10.1038/sj.bmt.1702447.
- Bucanevea G., Castagnolab E., Viscoli C. Leibovicid L., Menichettie F. Quinolone prophylaxis for bacterial infections in afebrile high risk neutropenic patients. *EJC Suppl.* 2007; 5(2): 5–12. doi:10.1016/J. EJCSUP.2007.06.002.
- Bisson G., Fishman N.O., Patel J.B., Edelstein P. H., Lautenbach E. Extended-spectrum β-lactamase–producing Escherichia coli and klebsiella species: risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence. *Infect. Control Hosp. Epidemiol.* 2002; 23(5): 254–60. doi:10.1086/502045.
- Razazi K., Derde L.P., Verachten M., Legrand P., Lesprit P., Brun-Buisson C. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. *Intensive Care Med.* 2012; 38(11): 1769–78. doi:10.1007/s00134-012-2675-0.
- 8. Wiener J., Quinn J.P., Bradfordn P.A. Goering R.V., Nathan C., Bush K. et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in Nursing Homes. *JAMA*. 1999; 281(6): 517–23. doi:10.1001/jama.281.6.517.
- 9. Guidelines for Susceptibility testing of microorganisms to antibacterial agents. *Antimicrob. Agents Chemother. Russian Journal (Klinicheskaya microbiologya i antimikrobnaya himioterapiya).* 2004; 6: 306–59. (in Russian)

- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standarts Institute; 2015.
- Savchenko V.G., ed. Program treatment of blood system diseases. Moscow: Praktika; 2012. (in Russian)
- Liss B.J., Vehreschild J.J., Cornely O.A. Hallek M., Fatkenheuer G., Wisplinghoff H., et al. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extendedspectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. *Infection*. 2012; 40(6): 613–9. doi:10.1007/s15010-012-0269-y.
- Okhmat V.A., Korobova A.G., Parovichnikova E.N., Troitskaya V.V., Klyasova G.A. Early discontinuation of antibiotic therapy in neutropenic patients with acute myeloid leukemia. *Hematology and Trans*fusiology. Russian Journal (Gematologiya i transfusiologiya). 2015; 60(3): 4–10. (in Russian)
- Cornejo-Juárez P., Suárez-Cuenca J.A., Volkow-Fernández P. Silva-Sáánchez J., Barrios-Camacho H., Nájera-Leon E., et al. Fecal ESBL Escherichia coli carriage as a risk factor for bacteremia in patients with hematological malignancies. Support Care Cancer. 2016; 24(1): 253–9. doi:10.1007/s00520-015-2772-z.
- Calatayud L., Arnan M., Liñares J. Dominguez M.A., Gudiol C., Carratalá J. et al. Prospective study of fecal colonization by extended-spectrum-beta-lactamase-producing Escherichia coli in neutropenic patients with cancer. *Antimicrob. Agents Chemother.* 2008; 52(11): 4187-90. doi:10.1128/AAC.00367-08.
- Paterson D.L., Bonomo R.A. Extended-Spectrum Beta-Lactamases: a Clinical Update. *Clin. Microbiol. Rev.* 2005; 18(4): 657–86. doi:10.1128/CMR.18.4.657-686.2005.
- Friedmann R., Raveh D., Zartzer E., Rudensky B., Broide E., Attias D., et al. Prospective evaluation of colonization with extended-spectrum beta-lactamase (ESBL)-producing enterobacteriaceae among patients at hospital admission and of subsequent colonization with ESBL-producing enterobacteriaceae among patients during hospitalization. *Infect. Control Hosp. Epidemiol.* 2009; 30(6): 534–42. doi: 10.1086/597505.
- Titelman E., Hasan C.M., Iversen A., Nauclér P., Kais M., Kalin M., et al. Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors. *Clin. Microbiol. Infect.* 2014; 20(8): O508–15. doi:10.1111/1469-0691.12559.
- Apisarnthanarak A., Bailey T.C., Fraser V.J. Duration of stool colonization in patients infected with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. *Clin. Infect. Dis.* 2008; 46(8): 1322–3. doi:10.1086/533475.
- Pasricha J., Koessler T., Harbarth S., Schrenzel J., Camus V., Cohen G., et al. Carriage of extended-spectrum beta-lactamase-producing enterobacteriacae among internal medicine patients in Switzerland. Antimicrob. Resist. Infect. Control. 2013; 2: 20. doi:10.1186/2047-2994-2-20.
- Klyasova G.A., Korobova A.G., Frolova I.N. Okhmat V.A., Kulikov S.M., Parovichnikova E.N., et al. Detection of extendedspectrum β-lactamase producing Enterobacteriaceae (ESBL-E) in patients with acute myeloid leukemia and lymphoma at admission to the hospital. Hematology and Transfusiology. Russian Journal (Gematologiya i transfusiologiya). 2016; 61(1): 25–32. (in Russian). doi:10.18821/0234-5730-2016-61-1-25-32.
- Tumbarello M., Trecarichi E.M., Bassetti M., De Rosa F.G., Spanu T., Di Meco E., et al. Identifying patients harboring extended-spectrum-beta-lactamase-producing Enterobacteriaceae on hospital admission: derivation and validation of a scoring system. *Antimicrob. Agents Chemother.* 2011; 55(7): 3485–90. doi:10.1128/AAC.00009-11.
- 23. Okhmat V.A., Klyasova G.A., Korobova A.G., Parovichnikova E.N., Fedorova A.V., Troitskaya V.V., et al. Should to all patients with febrile neutropenia and colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae carbapenems be appointed? *Oncohematology. Russian Journal (Onkogematologiya)*. 2016; 11(3): 49–57. (in Russian). doi:10.17650/1818-8346-2016-11-3-49-57.
- Averbuch D., Orasch C., Cordonnier C., Livermore D.M., Mikulska M., Viscoli C., et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. *Haematologica*. 2013; 98(12): 1826–35. doi:10.3324/haematol.2013.091025.

Поступила 19.09.17 Принята к печати 20.10.17