Detection of extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E) among patients with acute myeloid leukemia and lymphoma upon admission to hospital
https://doi.org/10.18821/0234-5730-2016-61-1-25-32
Abstract
The aim of the study was to evaluate colonization with ESBL-E of gut and oropharynx in patients with acute myeloid leukemia (AML) and lymphoma before the start of the chemotherapy. 98 patients (33 with AML and 65 with lymphoma) were included in the prospective study (2013–2014). Newly diagnosed hematological malignancies were in 94 (96%) patients. Median age of patients with lymphoma and AML was 47 and 35 years. For the first two days after admission to the hospital swabs from gut and oropharynx in patients were taken. ESBL production was confirmed by phenotypic tests, the genes blaCTX-M and blaTEM - by real-time PCR. Upon admission to the hospital ESBL-E colonization of gut was detected in 27% patients (28% in AML and 24% in lymphoma) and only 4% patients had ESBL-E colonization of throat, p < 0,01. Total of 34 of ESBL-E isolates were detected (E. coli 52%, K. pneumonia 42%, Citrobacter spp. 6%). CTX-M type ESBL was detected in 76% of isolates, TEM type – in 53%, coexistence of TEM and CTX-M – in 44%. Independent risk factors for ESBL-E colonization in patients with lymphoma were transfer from another hospital (OR 4,2; p = 0,01) and age from 50 years and older (OR 3,0; p = 0.05); in patients with AML – place of living outside of Moscow (OR 7,6; p = 0,04). Multivariate analysis showed the same risk factors. Our results make doubtful the prescription of fluoroquinolones for prophylaxis without prior screening. Prophylaxis with fluoroquinolones may be optimal only for patients without ESBL-E colonization.
About the Authors
G. A. KlyasovaRussian Federation
Galina A. Klyasova, MD, PhD, Prof., head of scientifc clinical laboratory of clinical bacteriology, mycology and antibiotic therapy
ResearcherID: M-6329-2014
Moscow, 125167
A. G. Korobova
Russian Federation
Researcher ID: M-6469-2014
Moscow, 125167
I. N. Frolova
Russian Federation
Researcher ID: M-7110-2014
Moscow, 125167
V. A. Okhmat
Russian Federation
Researcher ID: M-7089-2014
Moscow, 125167
S. M. Kulikov
Russian Federation
Researcher ID: P-8020-2014
Moscow, 125167
E. N. Parovichnikova
Russian Federation
Moscow, 125167
S. K. Kravchenko
Russian Federation
Moscow, 125167
References
1. World Health Organization: Antimicrobial resistance: global report on surveillance 2014. Geneva, Switzerland: WHO; 2014. Available at: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf (accessed 25 Jan 2016).
2. Klyasova G.A., Speranskaya L.L., Mironova A.V., Maschan M.A., Baydildina D.D., Vereshchagina S.A., et al. The pathogens causing sepsis in immunocompromized patients: structure and problems of antibiotic resistance. Results of a multi-center cooperative study. Hematology and Transfusiology, Russian journal (Gematologiya i transfusiologiya). 2007; 1: 11–8. (in Russian)
3. Kliasova G., Mironova A., Trushina E., Speranskaya L., Maschan M., Vereschagina S., et al. Epidemiology of bacteremia in hematological patients: results of prospective multicenter study in Russia. In: Infections in the Immuno-Compromised: Proc. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy. 2009, Sep. 12–15; San Francisco. Available at: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=543d2e6c-6288-4573-909b-5a214a7f2b24&cKey=2e122a31-68fa-4d1d-8b65-2f621c60338b&mKey={14EBFE7E-6F65-4D97-8CB6-F64F4347C38A} (accessed 25 January 2016).
4. Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Timokhova A.V., Dekhnich A.V., et al. Antimicrobial Resistance of Nosocomial Enterobacteriaceae Isolates in Russia: Results of National Multicenter Surveillance Study «MARATHON» 2011–2012. Clinical Microbiology and Antimicrobial Chemotherapy. Russian journal (Klinicheskaya Mikrobiologiya i Antimikrobnaya Himioterapiya). 2014; 16(4): 254–65. (in Russian)
5. Harris A.D., McGregor J.C., Johnson J.A., Strauss S.M., Moore A.C., Standiford H.C., et al. Risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria and intensive care unit admission. Emerg. Infect. Dis. 2007; 13(8): 1144–9. doi: 10.3201/eid1308.070071
6. Biehl L.M., Schmidt-Hieber M., Liss B., Cornely O.A., Vehreschild M.J. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients – Review of the literature from a clinical perspective. Crit. Rev. Microbiol. 2014. Available at: http://www.tandfonline.com/doi/pdf/10.3109/1040841X.2013.875515 (accessed 25 January 2016). doi:10.3109/1040841X.2013.875515
7. Woerther P.L., Burdet C., Chachaty E., Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013; 26(4): 744–58. doi: 10.1128/CMR.00023-13.
8. Kluytmans J.A., Overdevest I.T., Willemsen I., Kluytmans-van den Bergh M.F., van der Zwaluw K., Heck M., et al. Extendedspectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 2013; 56(4): 478–87. doi: 10.1093/cid/cis929.
9. Hammerum A.M., Larsen J., Andersen V.D., Lester C.H., Skovgaard Skytte T.S., Hansen F., et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J. Antimicrob. Chemother. 2014; 69(10): 2650–7. doi: 10.1093/jac/dku180.
10. Bucaneve G., Micozzi A., Menichetti F., Martino P., Dionisi M.S., Martinelli G., et al. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N. Engl. J. Med. 2005; 353(10): 977–87. doi: 10.1056/NEJMoa044097.
11. Gafter-Gvili A., Fraser A., Paul M., Leibovici L. Meta-analysis: antibiotic prophylaxis reduces mortality in neutropenic patients. Ann. Intern. Med. 2005; 142(12, Pt 1): 979–95. doi:10.7326/0003-4819-142-12_Part_1-200506210-00008.
12. Kern W.V., Klose K., Jellen-Ritter A.S., Oethinger M., Bohnert J., Kern P., et al. Fluoroquinolone resistance of Escherichia coli at a cancer center: epidemiologic evolution and effects of discontinuing prophylactic fluoroquinolone use in neutropenic patients with leukemia. Eur. J. Clin. Microbiol. Infect. Dis. 2005; 24(2): 111–8. doi 10.1007/s10096-005-1278-x.
13. Paterson D.L., Bonomo R.A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 2005; 18(4): 657–86. doi:10.1128/CMR.18.4.657-686.2005.
14. Guidelines for Susceptibility testing of microorganisms to antibacterial agents. Clinical Microbiology and Antimicrobial Chemotherapy. Russian journal (Klinicheskaya Mikrobiologiya i Antimikrobnaya Himioterapiya). 2004; 6(4): 306–59. (in Russian)
15. European Committee on Antimicrobial Susceptibility Testing guidelines for detection of resistance mechanisms and specifc resistances of clinical and/or epidemiological importance. V.1.0, 2013. Available at: http://eucast.org/fleadmin/src/media/PDFs/EUCAST_fles/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf (Accessed 25 January 2016)
16. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob. Agents. Chemother. 2004; 48(1): 1–14. doi: 10.1128/AAC.48.1.1-14.2004
17. Edelstein M.V., Stratchounski L.S. Trends in the prevalence and susceptibility of ESBL-producting Enterobacteriaceae to various antimicrobial agents in Russian ICUs. Clinical Microbiology and Antimicrobial Chemotherapy. Russian journal (Klinicheskaya Mikrobiologiya i Antimikrobnaya Himioterapiya). 2005; 7(4): 323–36 (in Russian)
18. Platteel T.N., Leverstein-van Hall M.A., Cohen Stuart J.W., Thijsen S.F., Mascini E.M., van Hees B.C., et al. Predicting carriage with extended-spectrum beta-lactamase-producing bacteria at hospital admission: a cross-sectional study. Clin. Microbiol. Infect. 2015; 21(2): 141–6. doi: 10.1016/j.cmi.2014.09.014
19. Shitrit P., Reisfeld S., Paitan Y., Gottesman B.S., Katzir M., Paul M., et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae carriage upon hospital admission: prevalence and risk factors. J. Hosp. Infect. 2013; 85(3): 230–2. doi: 10.1016/j.jhin.2013.07.014.
20. Ben-Ami R., Schwaber M.J., Navon-Venezia S., Schwartz D., Giladi M., Chmelnitsky I., et al. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin. Infect. Dis. 2006; 42(7): 925–4.
21. Bilavsky E., Temkin E., Lerman Y., Rabinovich A., Salomon J., Lawrence C., et al. Risk factors for colonization with extendedspectrum beta-lactamase-producing enterobacteriaceae on admission to rehabilitation centres. Clin. Microbiol. Infect. 2014; 20(11): O804–10. doi: 10.1111/1469-0691.12633.
22. Mushtaq A., Carvalho M., Chishti N., Khatoon S., Weeks J., Jehan F., et al. Frequency of carriage of New Delhi metallo beta-lactamase-1 (NDM-1) and CTX-M-15 among patients from hospitals in Karachi: preliminary data assessing risk factors for carriage and infection. In: NDM-producing bacteria: an in crescendo problem. Proc. 23th European Congress of Clinical Microbriology and Infectious Diseases. 2013, Apr. 27–30; Berlin. Available at: https://escmid.org/escmid_library/online_lecture_library/material/?mid=6957 (accessed 25 January 2016)
23. Klyasova G. A. Infections in patients with hematological malignancies: clinical features, diagnosis and treatment. Dis. Moscow; 2009. (in Russian)
24. Bucanevea G., Castagnolab E., Viscoli C., Leibovicid L., Menichettie F. Quinolone prophylaxis for bacterial infections in afebrile high risk neutropenic patients. Eur. J. Cancer Suppl. 2007; 5(2): 5–12. doi:10.1016/j.ejcsup.2007.06.002.
25. Bow E.J. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr. Opin. Infect. Dis. 2011; 24(6): 545–53. doi: 10.1097/QCO.0b013e32834cf054.
26. Tumbarello M., Sanguinetti M., Montuori E., Trecarichi E.M., Posteraro B., Fiori B., et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007; 51(6): 1987–94. doi:10.1128/AAC.01509-06.
27. Paterson D.L., Ko W.C., Von Gottberg A., Mohapatra S., Casellas J.M., Goossens H., et al. Antibiotic therapy for Klebsiella pneumonia bacteremia: implications of production of extendedspectrum beta-lactamases. Clin. Infect. Dis. 2004; 39(1): 31–7. doi:10.1086/420816.
28. Pea F., Poz D., Viale P., Pavan F., Furlanut M. Which reliable pharmacodynamics breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J. Antimicrob. Chemother. 2006; 58(2): 380–6. doi:10.1093/jac/dkl226.
Review
For citations:
Klyasova G.A., Korobova A.G., Frolova I.N., Okhmat V.A., Kulikov S.M., Parovichnikova E.N., Kravchenko S.K. Detection of extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E) among patients with acute myeloid leukemia and lymphoma upon admission to hospital. Russian journal of hematology and transfusiology. 2016;61(1):25-32. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-1-25-32