Preview

Russian journal of hematology and transfusiology

Advanced search

PLEIOTROPIC EFFECTS OF ORAL ANTICOAGULANTS

https://doi.org/10.35754/0234-5730-2019-64-1-90-98

Abstract

In this paper, we present a literature review with the purpose of elucidating the pleiotropic effects of oral anticoagulants. The literature search was performed using the PubMed and SCOPUS databases. Pleiotropic effects of direct anticoagulants are determined by the interaction of Xa and thrombin IIa factors with PAR-1 and PAR-2 receptors. The focus of this review is the connection between oral anticoagulants and their effects on atherosclerosis, angiogenesis, inflammation, cardiac remodelling, oncogenesis and glomerular diseases. Direct anticoagulants exhibit an anti-atherosclerotic effect manifested in a decreased progression and destabilization of atherosclerotic lesions. This effect is confirmed by a decreased binding activity of DNA with NF-kB and AP-1 transcription factors and reduced levels of some mediators. Such effects of new oral anticoagulants also relate to the processes of cardiac remodelling. FXa inhibitors contribute to the prevention of cardiac remodelling by reducing the processes of inflammation and fibrosis, which are associated with a decrease in the expression of PAR receptors in the heart. A number of studies also demonstrate an anti-inflammatory effect of oral anticoagulants, which is confirmed by reduced expression of mRNA inflammatory cytokines under the influence of direct anticoagulants and the production of IL-6 under the influence of warfarin. FXa inhibitors are shown to increase the expression of vascular growth factors, stimulate the migration of еndothelial рrogenitor сells and improve their function, thus manifesting their angiogenic pleiotropic effect. In addition, warfarin has an impact both on angiogenesis by means of reducing the activation of Axl tyrosine kinases and on glomerular pathologies by means of affecting the proliferation of mesangial cells through the Gas6/Axl pathway. The antitumour activity of warfarin is associated with inhibition of Gas6-mediated activation of Axl on tumour cells. Further investigations are required to fully understand the effect of oral anticoagulants on haemostasis.

About the Authors

G. S. Galyautdinov
Kazan State Medical University
Russian Federation
Genshat S. Galyautdinov, Dr. Sci. (Med.), Prof., Department of Hospital therapy


L. I. Feiskhanova
Kazan State Medical University
Russian Federation
Feiskhanova Lucia Iskhakovna, Сand. Sci. (Med.), Assistant Prof., Department of Hospital therapy


Sh. P. Abdullaev
Kazan State Medical University
Russian Federation
Abdullaev Shokhrukh Pardaboevich, Student


References

1. Jones M., McEwan P., Morgan C.L., et al. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005; 91: 472–77. DOI: dx.doi.org/10.1136/hrt.2004.042465

2. Takeuchi F., McGinnis R., Bourgeois S., et al. A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet. 2009; 5(3): 100–33. DOI: doi. org/10.1371/journal.pgen.1000433

3. Hankey G.J., Patel M.R., Stevens S.R., et al. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. The Lancet Neurology. 2012; 11: 315–22. DOI: 10.1016/S1474-4422(12)70042-X

4. Connolly S.J., Ezekowitz M.D., Phil D., et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009; 361: 1139–51. DOI: 10.1056/ NEJMoa0905561

5. Schulman S., Kearon C., Kakkar A.K., et al. Extended Use of Dabigatran, Warfarin, or Placebo in Venous Thromboembolism. N Engl J Med. 2013; 368: 709–18. DOI: 10.1056/NEJMoa1113697

6. Mega J.L., Braunwald E., Wiviott S.D., et al. Rivaroxaban in Patients with a Recent Acute Coronary Syndrome. N Engl J Med. 2012; 366: 9–19. DOI: 10.1056/ NEJMoa1112277

7. Gillis A.M., Krahn A.D., Skanes A.C., Nattel S. Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine; Can. J Cardiol. 2013; 29: 1141–6. DOI: 10.1016/j. cjca.2013.07.006

8. Papadaki S., Tselepis A.D. Non-haemostatic functions of Factor Xa: Are there pleiotropic effects of the direct oral anti-Xa anticoagulants? Hellenic Journal of Atherosclerosis. 2015; 6(3): 168–79. DOI: 10.23803/hja.v6i3.12

9. Spronk H.M.H., de Jong A.M., Crijns H.J., et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovascular Research. 2014; 101: 344–51. DOI: 10.1093/cvr/cvt343

10. Shafiq H., Rashid A., Majeed A. Effects of different warfarin doses on IL-6 and COX-2 levels. Pak Armed Forces Med J. 2016; 66(5): 673–75.

11. Levin P.A., Brekken R.A., Byers L.A., et al. Axl receptor axis: a new therapeutic target in lung cancer. J Thorac Oncol. 2016; 11(8): 1357–62. DOI: 10.1016/j. jtho.2016.04.015

12. Kirane A., Ludwig K.F., Sorrelle N., et al. Warfarin blocks Gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis; Cancer Res. 2015; 75(18): 3699–705. DOI: 10.1158/0008-5472.CAN-14-2887-T

13. Yanagita M., Arai H., Ishii K., et al. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. Am J Pathol. 2001; 158: 1423–32. DOI: 10.1016/S0002-9440(10)64093-X

14. Yanagita M., Ishii K., Ozaki H., et al. Mechanism of inhibitory effect of warfarin on mesangial cell proliferation. J Am Soc Nephrol. 1999; 10: 2503–9.

15. Esmon C.T. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb Haemost. 2014. 111: 625–33. DOI: 10.1160/TH13-09-0730

16. Borensztajn K., Peppelenbosch M.P., Spek C.A. Factor Xa: at the crossroads between coagulation and signaling in physiology and disease. Trends Mol Med. 2008; 14: 429–40. DOI: 10.1016/j.molmed.2008.08.001

17. Fan Y., Zhang W., Mulholland M. Thrombin and PAR-1-AP Increase Proinflammatory Cytokine Expression in C6 Cells. J Surg Res. 2005; 129: 196–201. DOI: 10.1016/j.jss.2005.07.041

18. Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA. 1994; 91(20): 9208–12.

19. Rosen E.D. Gene targeting in hemostasis. Factor X. Frontiers Bioscience: A J Virtual Library. 2002; 7: 1915–25.

20. Nakano T., Kawamoto K., Kishino J., et al. Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J. 1997; 323: 387–92.

21. Varnum B.C., Young C., Elliott G., et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995; 373: 623–6. DOI: 10.1038/373623a0

22. Manfioletti G., Brancolini C., Avanzi G., Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993; 13: 4976–85. DOI: 10.1128/MCB.13.8.4976

23. Stitt T.N., Conn G., Gore M., et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995; 80: 661–70. DOI: 10.1016/0092-8674(95)90520-0

24. O’Bryan J.P., Frye R.A., Cogswell P.C., et al. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991; 11: 5016–31. DOI: 10.1128/MCB.11.10.5016

25. Janssen J.W., Schulz A.S., Steenvoorden A.C., et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991; 6(11): 2113–20.

26. Suttie J.W. Vitamin K-dependent carboxylase. Annu Rev Biochem. 1985; 54: 459–77. DOI: 10.1146/annurev.bi.54.070185.002331

27. Boyle J.J. Macrophage Activation in Atherosclerosis: Pathogenesis and Pharmacology of Plaque Rupture. Current Vascular Pharmacology. 2005; 3: 63–8. DOI: 10.2174/1570161052773861

28. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352: 1685–95. DOI: 10.1056/NEJMra043430

29. Giesen P.L., Rauch U., Bohrmann B., et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA. 1999; 96(5): 2311–5.

30. Lee I.O., Kratz M.T., Schirmer S.H., et al. The Effects of Direct Thrombin Inhibition with Dabigatran on Plaque Formation and Endothelial Function in Apolipoprotein E-Deficient Mice. J. Pharmacol Exp Ther. 2012; 343(2): 253–7. DOI: 10.1124/jpet.112.194837

31. Hara T., Fukuda D., Tanaka K., et al. Rivaroxaban, A Novel Oral Anticoagulant, Attenuates Plaque Progression in ApoE-Deficient Mice Through the Inhibition of Pro-Inflammatory Activation of Macrophages. Am Heart Assoc, Circulation. 2015; 242: 639–46. DOI: 10.1016/j.atherosclerosis.2015.03.023

32. Kadoglou N.P.E., Moustardas P., Katsimpoulas M., et al. The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Etexilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice. Cardiovasc Drugs Ther. 2012; 26: 367–74. DOI: 10.1007/s10557-012-6411-3

33. Bea F., Kreuzer J., Preusch M., et al. Melagatran Reduces Advanced Atherosclerotic Lesion Size and May Promote Plaque Stability in Apolipoprotein E– Deficient Mice. Arterioscler Thromb Vasc Biol. 2006; 26: 2787–92. DOI: 10.1161/01.ATV.0000246797.05781

34. Turner N.A., O’Regan D.J., Ball S.G., Porter K.E. Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ ROCK pathway and reducing MMP-9 mRNA levels. FASEB J. 2005; 19(4): 804– 6. DOI: 10.1096/fj.04-2852fje

35. Zhou Q., Bea F., Preusch M., et al. Evaluation of Plaque Stability of Advanced Atherosclerotic Lesions in Apo E-Deficient Mice after Treatment with the Oral Factor Xa Inhibitor Rivaroxaban. Hindawi Publishing Corporation Mediators of Inflammation. 2011; 2011: 9. DOI: 10.1155/2011/432080

36. Katoh H., Nozue T., Michishita I. Anti-inflammatory effect of factor-Xa inhibitors in Japanese patients with atrial fibrillation. Heart and Vessels. 2017; 32: 1130–6. DOI: 10.1007/s00380-017-0962-y

37. Dimitri H., Ng M., Brooks A.G., Kuklik P., et al. Atrial remodeling in obstructive sleep apnea: Implications for atrial fibrillation. Heart Rhythm. 2012; 9: 321–7. DOI: 10.1016/j.hrthm.2011.10.017

38. Azuma M., Yoshimura F., Tanikawa S., et al. Factor XA Inhibition by Rivaroxaban Attenuates Cardiac Remodeling Due To Hypoxic Stress VIA PAR-2/ ERK/NF-κB Signaling Pathway. JACC. 2016; 67: 2238. DOI: 10.1016/S0735- 1097(16)32239-2

39. Mitsuishi R., Imano H., Kato R., et al. Rivaroxaban Attenuates Cardiac Remodeling Due To Intermittent Hypoxia By Suppressing The Synergistic Effects Of PAR-1 And PAR-2. JACC. 2017; 69: 2033. DOI: 10.1016/S0735-1097(17)35422-0

40. Antoniak S., Sparkenbaugh E.M., Tencati M., et al. Protease activated receptor-2 contributes to heart failure. PLoS One. 2013; 8(11): 81733. DOI: 10.1371/ journal.pone.0081733

41. Goto M., Miura S.I., Suematsu Y., et al. Rivaroxaban, a factor Xa inhibitor, induces the secondary prevention of cardiovascular events after myocardial ischemia reperfusion injury in mice. Intl J Cardiol. 2016; 220: 602–7. DOI: 10.1016/j. ijcard.2016.06.212

42. Maruyama K., Asai J., Ii M., et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007; 170: 1178–91. DOI: 10.2353/ajpath.2007.060018

43. Wu T.C., Chan J.S., Lee C.Y., et al. Rivaroxaban, a factor Xa inhibitor, improves neovascularization in the ischemic hindlimb of streptozotocin-induced diabetic mice. Cardiovascular Diabetology. 2015; 14: 81. DOI: 10.1186/s12933- 015-0243-y

44. Lange S., Gonzalez I., Pinto M.P., et al. Independent anti-angiogenic capacities of coagulation factors X and Xa. J Cell Physiol; 2014; 229: 1673–80. DOI: 10.1002/jcp.24612

45. Herbert J., Bono F., Herault J., et al. Effector protease receptor 1 mediates the mitogenic activity of factor Xa for vascular smooth muscle cells in vitro and in vivo. J Clin Invest. 1998; 101(5): 993–1000. DOI: 10.1172/JCI1833

46. Yavuz C., Caliskan A., Karahan O., et al. Investigation of the antiangiogenic behaviors of rivaroxaban and low molecular weight heparins. Blood Coagul Fibrinolysis. 2014; 25: 303–8. DOI: 10.1097/MBC.0000000000000019

47. Holland S.J., Powell M.J., Franci C., et al. Multiple Roles for the Receptor Tyrosine Kinase Axl in Tumor Formation. Cancer Res. 2005; 65(20): 9294–303. DOI: 10.1158/0008-5472.CAN-05-0993

48. Maseri A., Cianflone D. Inflammation in acute coronary syndromes. Eur Heart J. 2002; 4: 8–13. DOI: 10.1016/S1520-765X(02)90009-X

49. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Am Heart Assoc Circulation. 2001; 104: 365–72. DOI: 10.1161/01. CIR.104.3.365

50. Cirino G., Cicala C., Bucci M., et al. Factor Xa as an interface between coagulation and inflammation: Molecular mimicry of factor Xa association with effector cell protease receptor-1 induces acute inflammation in vivo. J Clin Invest. 1997; 99(10): 2446–51. DOI: 10.1172/JCI119428

51. Ruf W., Dorfleutner A., Riewald M. Specificity of coagulation factor signaling. Journal of Thrombosis and Haemostasis. 2003; 1: 1495–503. DOI: 10.1046/j.1538-7836.2003.00300.x

52. Hezi-Yamit A., Wong P.W., Bien-Ly N., et al. Synergistic induction of tissue factor by coagulation factor Xa and TNF: evidence for involvement of negative regulatory signaling cascades. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(34): 12077–82. DOI: 10.1073/ pnas.0504526102

53. Daubie V., Cauwenberghs S., Senden N.M.H., et al. Factor Xa and thrombin evoke additive calcium and proinflammatory responses in endothelial cells subjected to coagulation. Biochimica et Biophysica Acta — Molecular Cell Research. 2006; 1763: 860–9. DOI: 10.1016/j.bbamcr.2006.04.010

54. Stephenson D.A., Toltl L.J., Beaudin S., Liaw P.C. Modulation of monocyte function by activated protein c, a natural anticoagulant. J Immunol. 2006; 177(4): 2115–22. DOI: 10.4049/jimmunol.177.4.2115

55. Packard R.R.S., Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry. 2008; 54(1): 24–38. DOI: 10.1373/clinchem.2007.097360

56. Dorffler-Melly J., Schwarte L.A., Ince C., Levi M. Mouse models of focal arterial and venous thrombosis. Basic Research in Cardiology. 2000; 95: 503–9.

57. Terry C.M., He Y., Cheung A.K. Rivaroxaban improves patency and decreases inflammation in a mouse model of catheter thrombosis. Thrombosis Research. 2016; 114: 106–12. DOI: 10.1016/j.thromres.2016.06.008

58. Moon Y., Pestka J.J. Cyclooxygenase-2 mediates interleukin-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol Appl Pharmacol. 2003; 187(2): 80–8. DOI: 10.1016/S0041-008X(02)00033-9

59. Nagai K., Arai H., Yanagita M., et al. Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabetic nephropathy. J Biol Chem. 2003; 278: 18229–34. DOI: 10.1074/jbc.M213266200

60. Borissoff J.I., Spronk H.M.H., ten Cat H. The Hemostatic System as a Modulator of Atherosclerosis. N Engl J Med. 2011; 364: 1746–1760. DOI: 10.1056/ NEJMra1011670

61. Esmon C.T. Targeting factor Xa and thrombin: impact on coagulation and beyond. J Thromb Haemost. 2014; 111: 625–33. DOI: 10.1160/TH13-09-0730

62. Spronk H.M.H., de Jong A.M., Crijns H.J., et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovascular Research. 2014; 101: 344–51. DOI: 10.1093/cvr/cvt343


Review

For citations:


Galyautdinov G.S., Feiskhanova L.I., Abdullaev Sh.P. PLEIOTROPIC EFFECTS OF ORAL ANTICOAGULANTS. Russian journal of hematology and transfusiology. 2019;64(1):90-98. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-1-90-98

Views: 2689


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)