PLEIOTROPIC EFFECTS OF ORAL ANTICOAGULANTS
https://doi.org/10.35754/0234-5730-2019-64-1-90-98
Abstract
About the Authors
G. S. GalyautdinovRussian Federation
Genshat S. Galyautdinov, Dr. Sci. (Med.), Prof., Department of Hospital therapy
L. I. Feiskhanova
Russian Federation
Feiskhanova Lucia Iskhakovna, Сand. Sci. (Med.), Assistant Prof., Department of Hospital therapy
Sh. P. Abdullaev
Russian Federation
Abdullaev Shokhrukh Pardaboevich, Student
References
1. Jones M., McEwan P., Morgan C.L., et al. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005; 91: 472–77. DOI: dx.doi.org/10.1136/hrt.2004.042465
2. Takeuchi F., McGinnis R., Bourgeois S., et al. A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet. 2009; 5(3): 100–33. DOI: doi. org/10.1371/journal.pgen.1000433
3. Hankey G.J., Patel M.R., Stevens S.R., et al. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. The Lancet Neurology. 2012; 11: 315–22. DOI: 10.1016/S1474-4422(12)70042-X
4. Connolly S.J., Ezekowitz M.D., Phil D., et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009; 361: 1139–51. DOI: 10.1056/ NEJMoa0905561
5. Schulman S., Kearon C., Kakkar A.K., et al. Extended Use of Dabigatran, Warfarin, or Placebo in Venous Thromboembolism. N Engl J Med. 2013; 368: 709–18. DOI: 10.1056/NEJMoa1113697
6. Mega J.L., Braunwald E., Wiviott S.D., et al. Rivaroxaban in Patients with a Recent Acute Coronary Syndrome. N Engl J Med. 2012; 366: 9–19. DOI: 10.1056/ NEJMoa1112277
7. Gillis A.M., Krahn A.D., Skanes A.C., Nattel S. Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine; Can. J Cardiol. 2013; 29: 1141–6. DOI: 10.1016/j. cjca.2013.07.006
8. Papadaki S., Tselepis A.D. Non-haemostatic functions of Factor Xa: Are there pleiotropic effects of the direct oral anti-Xa anticoagulants? Hellenic Journal of Atherosclerosis. 2015; 6(3): 168–79. DOI: 10.23803/hja.v6i3.12
9. Spronk H.M.H., de Jong A.M., Crijns H.J., et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovascular Research. 2014; 101: 344–51. DOI: 10.1093/cvr/cvt343
10. Shafiq H., Rashid A., Majeed A. Effects of different warfarin doses on IL-6 and COX-2 levels. Pak Armed Forces Med J. 2016; 66(5): 673–75.
11. Levin P.A., Brekken R.A., Byers L.A., et al. Axl receptor axis: a new therapeutic target in lung cancer. J Thorac Oncol. 2016; 11(8): 1357–62. DOI: 10.1016/j. jtho.2016.04.015
12. Kirane A., Ludwig K.F., Sorrelle N., et al. Warfarin blocks Gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis; Cancer Res. 2015; 75(18): 3699–705. DOI: 10.1158/0008-5472.CAN-14-2887-T
13. Yanagita M., Arai H., Ishii K., et al. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. Am J Pathol. 2001; 158: 1423–32. DOI: 10.1016/S0002-9440(10)64093-X
14. Yanagita M., Ishii K., Ozaki H., et al. Mechanism of inhibitory effect of warfarin on mesangial cell proliferation. J Am Soc Nephrol. 1999; 10: 2503–9.
15. Esmon C.T. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb Haemost. 2014. 111: 625–33. DOI: 10.1160/TH13-09-0730
16. Borensztajn K., Peppelenbosch M.P., Spek C.A. Factor Xa: at the crossroads between coagulation and signaling in physiology and disease. Trends Mol Med. 2008; 14: 429–40. DOI: 10.1016/j.molmed.2008.08.001
17. Fan Y., Zhang W., Mulholland M. Thrombin and PAR-1-AP Increase Proinflammatory Cytokine Expression in C6 Cells. J Surg Res. 2005; 129: 196–201. DOI: 10.1016/j.jss.2005.07.041
18. Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA. 1994; 91(20): 9208–12.
19. Rosen E.D. Gene targeting in hemostasis. Factor X. Frontiers Bioscience: A J Virtual Library. 2002; 7: 1915–25.
20. Nakano T., Kawamoto K., Kishino J., et al. Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J. 1997; 323: 387–92.
21. Varnum B.C., Young C., Elliott G., et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995; 373: 623–6. DOI: 10.1038/373623a0
22. Manfioletti G., Brancolini C., Avanzi G., Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993; 13: 4976–85. DOI: 10.1128/MCB.13.8.4976
23. Stitt T.N., Conn G., Gore M., et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995; 80: 661–70. DOI: 10.1016/0092-8674(95)90520-0
24. O’Bryan J.P., Frye R.A., Cogswell P.C., et al. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991; 11: 5016–31. DOI: 10.1128/MCB.11.10.5016
25. Janssen J.W., Schulz A.S., Steenvoorden A.C., et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991; 6(11): 2113–20.
26. Suttie J.W. Vitamin K-dependent carboxylase. Annu Rev Biochem. 1985; 54: 459–77. DOI: 10.1146/annurev.bi.54.070185.002331
27. Boyle J.J. Macrophage Activation in Atherosclerosis: Pathogenesis and Pharmacology of Plaque Rupture. Current Vascular Pharmacology. 2005; 3: 63–8. DOI: 10.2174/1570161052773861
28. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352: 1685–95. DOI: 10.1056/NEJMra043430
29. Giesen P.L., Rauch U., Bohrmann B., et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA. 1999; 96(5): 2311–5.
30. Lee I.O., Kratz M.T., Schirmer S.H., et al. The Effects of Direct Thrombin Inhibition with Dabigatran on Plaque Formation and Endothelial Function in Apolipoprotein E-Deficient Mice. J. Pharmacol Exp Ther. 2012; 343(2): 253–7. DOI: 10.1124/jpet.112.194837
31. Hara T., Fukuda D., Tanaka K., et al. Rivaroxaban, A Novel Oral Anticoagulant, Attenuates Plaque Progression in ApoE-Deficient Mice Through the Inhibition of Pro-Inflammatory Activation of Macrophages. Am Heart Assoc, Circulation. 2015; 242: 639–46. DOI: 10.1016/j.atherosclerosis.2015.03.023
32. Kadoglou N.P.E., Moustardas P., Katsimpoulas M., et al. The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Etexilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice. Cardiovasc Drugs Ther. 2012; 26: 367–74. DOI: 10.1007/s10557-012-6411-3
33. Bea F., Kreuzer J., Preusch M., et al. Melagatran Reduces Advanced Atherosclerotic Lesion Size and May Promote Plaque Stability in Apolipoprotein E– Deficient Mice. Arterioscler Thromb Vasc Biol. 2006; 26: 2787–92. DOI: 10.1161/01.ATV.0000246797.05781
34. Turner N.A., O’Regan D.J., Ball S.G., Porter K.E. Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ ROCK pathway and reducing MMP-9 mRNA levels. FASEB J. 2005; 19(4): 804– 6. DOI: 10.1096/fj.04-2852fje
35. Zhou Q., Bea F., Preusch M., et al. Evaluation of Plaque Stability of Advanced Atherosclerotic Lesions in Apo E-Deficient Mice after Treatment with the Oral Factor Xa Inhibitor Rivaroxaban. Hindawi Publishing Corporation Mediators of Inflammation. 2011; 2011: 9. DOI: 10.1155/2011/432080
36. Katoh H., Nozue T., Michishita I. Anti-inflammatory effect of factor-Xa inhibitors in Japanese patients with atrial fibrillation. Heart and Vessels. 2017; 32: 1130–6. DOI: 10.1007/s00380-017-0962-y
37. Dimitri H., Ng M., Brooks A.G., Kuklik P., et al. Atrial remodeling in obstructive sleep apnea: Implications for atrial fibrillation. Heart Rhythm. 2012; 9: 321–7. DOI: 10.1016/j.hrthm.2011.10.017
38. Azuma M., Yoshimura F., Tanikawa S., et al. Factor XA Inhibition by Rivaroxaban Attenuates Cardiac Remodeling Due To Hypoxic Stress VIA PAR-2/ ERK/NF-κB Signaling Pathway. JACC. 2016; 67: 2238. DOI: 10.1016/S0735- 1097(16)32239-2
39. Mitsuishi R., Imano H., Kato R., et al. Rivaroxaban Attenuates Cardiac Remodeling Due To Intermittent Hypoxia By Suppressing The Synergistic Effects Of PAR-1 And PAR-2. JACC. 2017; 69: 2033. DOI: 10.1016/S0735-1097(17)35422-0
40. Antoniak S., Sparkenbaugh E.M., Tencati M., et al. Protease activated receptor-2 contributes to heart failure. PLoS One. 2013; 8(11): 81733. DOI: 10.1371/ journal.pone.0081733
41. Goto M., Miura S.I., Suematsu Y., et al. Rivaroxaban, a factor Xa inhibitor, induces the secondary prevention of cardiovascular events after myocardial ischemia reperfusion injury in mice. Intl J Cardiol. 2016; 220: 602–7. DOI: 10.1016/j. ijcard.2016.06.212
42. Maruyama K., Asai J., Ii M., et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007; 170: 1178–91. DOI: 10.2353/ajpath.2007.060018
43. Wu T.C., Chan J.S., Lee C.Y., et al. Rivaroxaban, a factor Xa inhibitor, improves neovascularization in the ischemic hindlimb of streptozotocin-induced diabetic mice. Cardiovascular Diabetology. 2015; 14: 81. DOI: 10.1186/s12933- 015-0243-y
44. Lange S., Gonzalez I., Pinto M.P., et al. Independent anti-angiogenic capacities of coagulation factors X and Xa. J Cell Physiol; 2014; 229: 1673–80. DOI: 10.1002/jcp.24612
45. Herbert J., Bono F., Herault J., et al. Effector protease receptor 1 mediates the mitogenic activity of factor Xa for vascular smooth muscle cells in vitro and in vivo. J Clin Invest. 1998; 101(5): 993–1000. DOI: 10.1172/JCI1833
46. Yavuz C., Caliskan A., Karahan O., et al. Investigation of the antiangiogenic behaviors of rivaroxaban and low molecular weight heparins. Blood Coagul Fibrinolysis. 2014; 25: 303–8. DOI: 10.1097/MBC.0000000000000019
47. Holland S.J., Powell M.J., Franci C., et al. Multiple Roles for the Receptor Tyrosine Kinase Axl in Tumor Formation. Cancer Res. 2005; 65(20): 9294–303. DOI: 10.1158/0008-5472.CAN-05-0993
48. Maseri A., Cianflone D. Inflammation in acute coronary syndromes. Eur Heart J. 2002; 4: 8–13. DOI: 10.1016/S1520-765X(02)90009-X
49. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Am Heart Assoc Circulation. 2001; 104: 365–72. DOI: 10.1161/01. CIR.104.3.365
50. Cirino G., Cicala C., Bucci M., et al. Factor Xa as an interface between coagulation and inflammation: Molecular mimicry of factor Xa association with effector cell protease receptor-1 induces acute inflammation in vivo. J Clin Invest. 1997; 99(10): 2446–51. DOI: 10.1172/JCI119428
51. Ruf W., Dorfleutner A., Riewald M. Specificity of coagulation factor signaling. Journal of Thrombosis and Haemostasis. 2003; 1: 1495–503. DOI: 10.1046/j.1538-7836.2003.00300.x
52. Hezi-Yamit A., Wong P.W., Bien-Ly N., et al. Synergistic induction of tissue factor by coagulation factor Xa and TNF: evidence for involvement of negative regulatory signaling cascades. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(34): 12077–82. DOI: 10.1073/ pnas.0504526102
53. Daubie V., Cauwenberghs S., Senden N.M.H., et al. Factor Xa and thrombin evoke additive calcium and proinflammatory responses in endothelial cells subjected to coagulation. Biochimica et Biophysica Acta — Molecular Cell Research. 2006; 1763: 860–9. DOI: 10.1016/j.bbamcr.2006.04.010
54. Stephenson D.A., Toltl L.J., Beaudin S., Liaw P.C. Modulation of monocyte function by activated protein c, a natural anticoagulant. J Immunol. 2006; 177(4): 2115–22. DOI: 10.4049/jimmunol.177.4.2115
55. Packard R.R.S., Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry. 2008; 54(1): 24–38. DOI: 10.1373/clinchem.2007.097360
56. Dorffler-Melly J., Schwarte L.A., Ince C., Levi M. Mouse models of focal arterial and venous thrombosis. Basic Research in Cardiology. 2000; 95: 503–9.
57. Terry C.M., He Y., Cheung A.K. Rivaroxaban improves patency and decreases inflammation in a mouse model of catheter thrombosis. Thrombosis Research. 2016; 114: 106–12. DOI: 10.1016/j.thromres.2016.06.008
58. Moon Y., Pestka J.J. Cyclooxygenase-2 mediates interleukin-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol Appl Pharmacol. 2003; 187(2): 80–8. DOI: 10.1016/S0041-008X(02)00033-9
59. Nagai K., Arai H., Yanagita M., et al. Growth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabetic nephropathy. J Biol Chem. 2003; 278: 18229–34. DOI: 10.1074/jbc.M213266200
60. Borissoff J.I., Spronk H.M.H., ten Cat H. The Hemostatic System as a Modulator of Atherosclerosis. N Engl J Med. 2011; 364: 1746–1760. DOI: 10.1056/ NEJMra1011670
61. Esmon C.T. Targeting factor Xa and thrombin: impact on coagulation and beyond. J Thromb Haemost. 2014; 111: 625–33. DOI: 10.1160/TH13-09-0730
62. Spronk H.M.H., de Jong A.M., Crijns H.J., et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovascular Research. 2014; 101: 344–51. DOI: 10.1093/cvr/cvt343
Review
For citations:
Galyautdinov G.S., Feiskhanova L.I., Abdullaev Sh.P. PLEIOTROPIC EFFECTS OF ORAL ANTICOAGULANTS. Russian journal of hematology and transfusiology. 2019;64(1):90-98. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-1-90-98