Reconstitution of T-cell-mediated immunity in patients after allogeneic stem cell transplantation
https://doi.org/10.35754/0234-5730-2020-65-1-24-38
Abstract
Background. The timely reconstitution of the donor-derived immune system is a key factor in the prevention of such post-transplant complications as graft versus host disease, relapse or secondary tumours and various infections. These complications affect the long-term survival of patients after allogeneic stem cell transplantation.
Aim — to describe the main stages of T Cell–mediated immune recovery in patients after allogeneic stem cell transplantation.
General findings. T-cell–mediated immunity is responsible for anti-infective and anti-tumour immune response. The early post-transplant period is characterized by the thymus-independent pathway of T-cell recovery largely involving proliferation of mature donor T cells, which were transplanted to the patient together with hematopoietic stem cells. To a lesser extent, this recovery pathway is realized through the expansion of host naïve and memory T cells, which survived after conditioning. Thymus-dependent reconstitution involves generation of de novo naïve T cells and subsequent formation of a pool of memory T-cells providing the main immunological effects — graft versus tumour and graft versus host reactions. A better understanding of the T-cell immune reconstitution process is important for selecting optimized pre-transplant conditioning regimens and patient-specific immunosuppressive therapy approaches, thus reducing the risks of post-transplant complications and improving the long-term survival of patients after allogeneic stem cell transplantation.
Keywords
About the Authors
N. N. PopovaRussian Federation
Natalia N. Popova – Hematologist, High-Dose Chemotherapy and Bone Marrow Transplantation.
125167, Moscow
tel. +7 (495) 614-90-42
V. G. Savchenko
Russian Federation
Valeriy G. Savchenko – Dr. Sci. (Med.), Prof., RAS Academician, General Director.
125167, Moscow
References
1. Mehta R.S., Rezvani K. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection. Virulence. 2016; 7(8): 901–16. DOI: 10.1080/21505594.2016.1208866.
2. Kim B.E., Koh K.N., Im H.J., Seo J.J. Factors influencing lymphocyte reconstitution after allogeneic hematopoietic stem cell transplantation in children. Korean J Hematol. 2012; 47(1): 44–52. DOI: 10.5045/kjh.2012.47.1.44.
3. de Koning C., Plantinga M., Besseling P. et al. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children. Biol Blood Marrow Transplant. 2016; 22(2): 195–206. DOI: 10.1016/j.bbmt.2015.08.028.
4. Drokov M.Y., Davydova J.O., Kuzmina L.A. et al. Level of Granzyme B-positive T-regulatory cells is a strong predictor biomarker of acute Graft-versus-host disease after day +30 after allo-HSCT. Leuk Res. 2017; 54: 25–9. DOI: 10.1016/j.leukres.2017.01.014.
5. Williams K.M., Gress R.E. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol. 2008; 21(3): 579–96. DOI: 10.1016/j.beha.2008.06.003.
6. Ogonek J., Kralj Juric M., Ghimire S. et al. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol. 2016; 7: 507. DOI:10.3389/fimmu.2016.00507.
7. Krenger W., Blazar B. R., Holländer G.A. Thymic T-cell development in allogeneic stem cell transplantation. Blood. 2011; 117(25): 6768–76. DOI: 10.1182/blood-2011-02-334623.
8. Bourgeois C., Stockinger B. T cell homeostasis in steady state and lymphopenic conditions. Immunol Lett. 2006; 107(2): 89–92. DOI: 10.1016/j.imlet.2006.08.001.
9. Ge Q., Rao V.P., Cho B.K. et al. Dependence of lymphopenia-induced T cell proliferation on the abundance of peptide/ MHC epitopes and strength of their interaction with T cell receptors. Proc Natl Acad Sci USA. 2001; 98(4): 1728–33. DOI: 10.1073/pnas.98.4.1728.
10. Jameson S.C. T cell homeostasis: keeping useful T cells alive and live T cells useful. Semin Immunol. 2005; 17(3): 231–7. DOI: 10.1016/j.smim.2005.02.003.
11. Pénit C., Lucas B., Vasseur F. Cell expansion and growth arrest phases during the transition from precursor (CD4-8-) to immature (CD4+ 8+ ) thymocytes in normal and genetically modified mice. J Immunol. 1995; 15; 154(10): 5103–13.
12. Ye P., Kirschner D.E. Measuring emigration of human thymocytes by T-cell receptor excision circles. Crit Rev Immunol. 2002; 22(5–6): 483–97.
13. Onozawa M., Aplan P.D. llegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer. 2012; 51(6): 525–35. DOI: 10.1002/gcc.21942.
14. Kreslavsky T., Gleimer M., Garbe A.I., von Boehmer H. αβ versus γδ fate choice: counting the T-cell lineages at the branch point. Immunol Rev. 2010; 238(1): 169–81. DOI: 10.1111/j.1600-065X.2010.00947.x.
15. Albano F., Vecchio E., Renna M. et al. Insights into Thymus Development and Viral Thymic Infections. Viruses. 2019; 11(9): 836. DOI: 10.3390/v11090836.
16. Godfrey D.I., Kennedy J., Suda T., Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3– CD4– CD8– triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol. 1993; 150(10): 4244–52.
17. Gardner J.M., Fletcher A.L., Anderson M.S., Turley S.J. AIRE in the thymus and beyond. Curr Opin Immunol. 2009; 21(6): 582–9. DOI: 10.1016/j.coi.2009.08.007.
18. Kondĕlková K., Vokurková D., Krejsek J. et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove). 2010; 53(2): 73–7. DOI: 10.14712/18059694.2016.63.
19. Drokov M.Y., Parovichnikova E.N., Kuzmina L.A., et. al. The role of Granzyme B in T regulatory cells in patients after allogeneic bone marrow transplantation. Gematologiya i transfusiologiya. 2016; 61(1): 32–7. DOI 10.18821/02345730-2016-61-1-32-37 (In Russian).
20. Ivanov S., Paget C., Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog. 2014; 10(10): e1004300. DOI: 10.1371/journal.ppat.1004300.
21. Yamamoto R., Xu Y., Ikeda S. et al. Thymic Development of a Unique Bone Marrow-Resident Innate-like T Cell Subset with a Potent Innate Immune Function. J Immunol. 2019; 203(1): 167–77. DOI: 10.4049/jimmunol.1900111.
22. Oehen S., Brduscha-Riem K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol. 1998; 161(10): 5338–46.
23. Kaech S.M., Hemby S., Kersh E., Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell. 2002; 111(6): 837–51. DOI: 10.1016/s0092-8674(02)01139-x.
24. Lau C.M., Sun J.C. The widening spectrum of immunological memory. Curr Opin Immunol. 2018; 54: 42–9. DOI: 10.1016/j.coi.2018.05.013.
25. Lauvau G., Vijh S., Kong P. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science. 2001; 294(5547): 1735–9. DOI:10.1126/science.1064571.
26. Manjunath N., Shankar P., Wan J. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest. 2001; 108(6): 871–8. DOI: 10.1172/JCI13296.
27. Sallusto F., Lenig D., Förster R. et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999; 401(6754): 708–12. DOI: 10.1038/44385.
28. Hamann D., Baars P.A., Rep M.H. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997; 186(9): 1407–18.
29. Mahnke Y.D., Beddall M.H., Roederer M. OMIP-013: differentiation of human T-cells. Cytometry A. 2012; 81(11): 935–6. DOI: 10.1002/cyto.a.22201.
30. Mahnke Y.D., Brodie T.M., Sallusto F. et al. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013; 43(11): 2797–809. DOI: 10.1002/eji.201343751.
31. Johannisson A., Festin R. Phenotype transition of CD4 + T cells from CD45RA to CD45R0 is accompanied by cell activation and proliferation. Cytometry. 1995; 19(4): 343–52. DOI: 10.1002/cyto.990190409.
32. Akbar A.N., Terry L., Timms A. et al. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988; 140(7): 2171–8.
33. Picker L.J., Treer J.R., Ferguson-Darnell B. et al. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J Immunol. 1993; 150(3): 1122–36.
34. Sallusto F., Geginat J., Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004; 22: 745–63. DOI: 10.1146/annurev.immunol.22.012703.104702.
35. Stemberger C., Neuenhahn M., Gebhardt F.E. et al. Stem cell-like plasticity of naïve and distinct memory CD8 + T cell subsets. Semin Immunol. 2009; 21(2): 62–8. DOI: 10.1016/j.smim.2009.02.004.
36. Mueller S.N., Gebhardt T., Carbone F.R., Heath W.R. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol. 2013; 31: 137–61. DOI: 10.1146/annurev-immunol-032712-095954.
37. Fagnoni F.F., Vescovini R., Passeri G. et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood. 2000; 95(9): 2860–8.
38. Lugli E., Pinti M., Nasi M. et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A. 2007; 71(5): 334–44. DOI: 10.1002/cyto.a.20387.
39. Gattinoni L., Lugli E., Ji Y. et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011; 17(10): 1290–7. DOI: 10.1038/nm.2446.
40. Lugli E., Dominguez M.H., Gattinoni L. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest. 2013; 123(2): 594–9. DOI: 10.1172/JCI66327.
41. Feuerer M., Beckhove P., Bai L. et al. Therapy of human tumors in NOD/ SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med. 2001; 7(4): 452–8. DOI: 10.1038/86523.
42. Cieri N., Oliveira G., Greco R. et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood. 2015; 125(18): 2865–74. DOI: 10.1182/blood-2014-11-608539.
43. Gattinoni L., Speiser D.E., Lichterfeld M., Bonini C. T memory stem cells in health and disease. Nat Med. 2017; 23(1): 18–27. DOI: 10.1038/nm.4241.
44. Fritsch R.D., Shen X., Sims G.P. et al. Stepwise differentiation of CD4 memory T cells defined by expression of CCR7 and CD27. J Immunol. 2005; 175(10): 6489–97. DOI: 10.4049/jimmunol.175.10.6489.
45. Okada R., Kondo T., Matsuki F. et al. Phenotypic classification of human CD4 + T cell subsets and their differentiation. Int Immunol. 2008; 20(9):1189–99. DOI: 10.1093/intimm/dxn075.
46. Picker L.J., Reed-Inderbitzin E.F., Hagen S.I. et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J Clin Invest. 2006; 116(6): 1514–24. DOI: 10.1172/JCI27564.
47. Geginat J., Lanzavecchia A., Sallusto F. Proliferation and differentiation potential of human CD8 + memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003; 101(11): 4260–6. DOI: 10.1182/blood-2002-11-3577.
48. Schreiner D., King C.G. CD4 + Memory T Cells at Home in the Tissue: Mechanisms for Health and Disease. Front Immunol. 2018; 9: 2394. DOI: 10.3389/fimmu.2018.02394.
49. Billingham RE. The biology of graft-versus-host reactions. Harvey Lect. 1966; 62: 21–78.
50. Krenger W., Holländer G.A. The immunopathology of thymic GVHD. Semin Immunopathol. 2008; 30(4): 439–56. DOI: 10.1007/s00281-008-0131-6.
51. Beilhack A., Schulz S., Baker J. et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005; 106(3): 1113–22. DOI: 10.1182/blood-2005-02-0509.
52. Wysocki C.A., Panoskaltsis-Mortari A., Blazar B.R., Serody J.S. Leukocyte migration and graft-versus-host disease. Blood. 2005; 105(11): 4191–99. DOI:10.1182/blood-2004-12-4726.
53. Drokov M.Y., Parovichnikova E.N., Kuzmina L.A. et al. Transplantation of allogeneic bone marrow without pre-transplant conditioning using Cyclophosphamide and Mesenchymal stromal cells as immune tolerance induction. Gematologiya i transfusiologiya. 2014; 59(1): 42–6 (In Russian).
54. Luznik L., O‘Donnell P.V., Symons H.J. et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008; 14(6): 641–50. DOI: 10.1016/j.bbmt.2008.03.005.
55. Cieri N., Peccatori J., Oliveiera G. et al. Tracking T cell dynamics in the first month after haploidentical HSCT with post-transplant cyclophosphamide reveals a predominant contribution of memory stem T cells to the early phase of immune reconstitution. Blood. 2013; 122(21): 4615. DOI: 10.1182/blood.V122.21.4615.4615.
56. Al-Homsi A.S., Roy T.S., Cole K. et al. Post-Transplant High-Dose Cyclophosphamide for the Prevention of Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2015; 21(4): 604–11. DOI: 10.1016/j.bbmt.2014.08.014.
57. Servais S., Menten-Dedoyart C., Beguin Y. et al. Impact of Pre-Transplant Anti-T Cell Globulin (ATG) on Immune Recovery after Myeloablative Allogeneic Peripheral Blood Stem Cell Transplantation. PLoS One. 2015; 10(6): e0130026. DOI: 10.1371/journal.pone.0130026.
58. Storek J., Mohty M., Boelens J.J. Rabbit anti-T cell globulin in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015; 21(6): 959–70. DOI: 10.1016/j.bbmt.2014.11.676.
59. Retière C., Willem C., Guillaume T. et al. Impact on early outcomes and immune reconstitution of high-dose post-transplant cyclophosphamide vs anti-thymocyte globulin after reduced intensity conditioning peripheral blood stem cell allogeneic transplantation. Oncotarget. 2018; 9(14): 11451–64. DOI: 10.18632/oncotarget.24328.
60. Bosch M., Dhadda M., Hoegh-Petersen M. et al. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy. 2012; 14(10): 1258–75. DOI: 10.3109/14653249.2012.715243.
61. Battipaglia G., Labopin M., Kröger N. et al. Posttransplant cyclophosphamide vs antithymocyte globulin in HLA-mismatched unrelated donor transplantation. Blood. 2019; 134(11): 892–9. DOI: 10.1182/blood.2019000487.
62. Nykolyszyn C., Granata A., Pagliardini T. et al. Posttransplantation cyclophosphamide vs antithymocyte globulin as GVHD prophylaxis for mismatched unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019. DOI: 10.1038/s41409-019-0682-2.
63. Pagliardini T., Harbi S., Fürst S. et al. Post-transplantation cyclophosphamidebased haploidentical versus Atg-based unrelated donor allogeneic stem cell transplantation for patients younger than 60 years with hematological malignancies: a single-center experience of 209 patients. Bone Marrow Transplant. 2019; 54(7): 1067–76. DOI: 10.1038/s41409-018-0387-y.
64. Fløisand Y., Lundin K.E.A., Lazarevic V. et al. Targeting Integrin α4β7 in Steroid-Refractory Intestinal Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017; 23(1): 172–5. DOI: 10.1016/j.bbmt.2016.10.009.
65. Wherry E.J., Teichgräber V., Becker T.C. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003; 4(3): 225–34. DOI: 10.1038/ni889.
66. Graef P., Buchholz V.R., Stemberger C. et al. Serial transfer of single-cellderived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity. 2014; 41(1): 116–26. DOI: 10.1016/j.immuni.2014.05.018.
67. Gattinoni L. Memory T cells officially join the stem cell club. Immunity. 2014; 41(1): 7–9. DOI: 10.1016/j.immuni.2014.07.003.
68. Huang W., Mo W., Jiang J. et al. Donor Allospecific CD44high Central Memory T Cells Have Decreased Ability to Mediate Graft-vs.-Host Disease. Front Immunol. 2019; 10: 624. DOI: 10.3389/fimmu.2019.00624.
69. Maschan M.A. Alfa/beta T cell depletion is a strong platform for development of haploidentical transplantstion. Rossiyskiy jurnal detskoy hematologii i onkologii. 2015; 2(3): 34–8 (In Russian).
70. Lamb L.S. Jr, Henslee-Downey P.J., Parrish R.S. et al. Increased frequency of TCR gamma delta + T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J Hematother. 1996; 5(5): 503–9. DOI: 10.1089/scd.1.1996.5.503.
71. Saad A., Lamb L. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: past, present and future. Bone marrow transplantation 2017; 52(9): 1241–8. DOI: 10.1038/bmt.2017.22.
72. Weinberg K., Blazar B.R., Wagner J.E. et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood. 2001; 97(5): 1458–66. DOI: 10.1182/blood.v97.5.1458.
73. Jiménez M., Martínez C., Ercilla G. et al. Clinical factors influencing T-cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults. Transpl Immunol. 2006; 16(1): 52–9. DOI: 10.1016/j.trim.2006.02.006.
74. Castermans E., Hannon M., Dutrieux J. et al. Thymic recovery after allogeneic hematopoietic cell transplantation with non-myeloablative conditioning is limited to patients younger than 60 years of age. Haematologica. 2011; 96(2): 298–306. DOI: 10.3324/haematol.2010.029702.
75. Chung B., Barbara-Burnham L., Barsky L., Weinberg K. Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood. 2001; 98(5): 1601–6. DOI: 10.1182/blood.v98.5.1601.
76. Fletcher A.L., Lowen T.E., Sakkal S. et al. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol. 2009; 183(2): 823–31. DOI:10.4049/jimmunol.0900225.
77. MacVittie T.J., Bennett A.W., Cohen M.V. et al. Immune cell reconstitution after exposure to potentially lethal doses of radiation in the nonhuman primate. Health Phys. 2014; 106(1): 84–96. DOI: 10.1097/HP.0b013e3182a2a9b2.
78. Mackall C.L., Fleisher T.A., Brown M.R. et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood. 1997; 89(10): 3700–7.
79. Turner B.E., Collin M., Rice A.M. Reduced intensity conditioning for hematopoietic stem cell transplantation: has it achieved all it set out to? Cytotherapy. 2010; 12(4): 440–54. DOI: 10.3109/14653241003709678.
80. Jiménez M., Ercilla G., Martínez C. Immune reconstitution after allogeneic stem cell transplantation with reduced-intensity conditioning regimens. Leukemia. 2007; 21(8): 1628–37. DOI: 10.1038/sj.leu.2404681.
81. Jiménez M., Martínez C., Ercilla G. et al. Reduced-intensity conditioning regimen preserves thymic function in the early period after hematopoietic stem cell transplantation. Exp Hematol. 2005; 33(10): 1240–8. DOI: 10.1016/j.exphem.2005.06.016.
82. Bahceci E., Epperson D., Douek D.C. et al. Early reconstitution of the T-cell repertoire after non-myeloablative peripheral blood stem cell transplantation is from post-thymic T-cell expansion and is unaffected by graft-versus-host disease or mixed chimaerism. Br J Haematol. 2003; 122(6): 934–43. DOI: 10.1046/j.13652141.2003.04522.x.
83. Small T.N., Papadopoulos E.B., Boulad F. et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood. 1999; 93(2): 467–80.
Review
For citations:
Popova N.N., Savchenko V.G. Reconstitution of T-cell-mediated immunity in patients after allogeneic stem cell transplantation. Russian journal of hematology and transfusiology. 2020;65(1):24-38. (In Russ.) https://doi.org/10.35754/0234-5730-2020-65-1-24-38