Management of immune thrombocytopenia during COVID-19 pandemic
https://doi.org/10.35754/0234-5730-2021-66-1-20-36
Abstract
Introduction. The COVID-19 pandemic has challenged health professionals and patients suffering from haematological diseases with embarrassed diagnosis, treatment, surveillance, social distancing and other constraints.
Aim — addressing therapy for immune thrombocytopenia (ITP) during the COVID-19 pandemic in the light of own experience, as well as national and international professional medical community guidelines.
Main findings. A standard choice in COVID-19-negative ITP patients are conventional, e.g., glucocorticosteroid (GCS) and intravenous immunoglobulin therapies. An early transfer to thrombopoietin receptor agonists (rTPO) appears optimal as reducing the infection risk in GCS withdrawal and significantly improving the stable remission rate without supportive treatment. Combined ITP–COVID-19 patients should consider a prednisolone treatment of 20 mg/day, provided an absent active bleeding. The dose may increase to 1 mg/kg/day in no response after 3–5 days. ITP patients admitted for COVID-19 should start weight‐based LMWH thromboprophylaxis upon attaining a platelet count of ≥ 30 × 109 /L. Chronic ITP patients should carry on usual treatment with standard SARS-CoV-2 preventive and social distancing measures. We exemplify three contrasting clinical cases of COVID-19-comorbid thrombocytopenia and discuss the ITP differential diagnosis and therapy. Two patients received GCSs and rTPO agonists (romiplostim, eltrombopag), while GCSs alone provided for platelet response in the third case. All patients showed a good clinical and biological response. Issues in SARS-CoV-2 vaccination are discussed.
About the Authors
S. V. SemochkinRussian Federation
Sergey V. Semochkin, Dr. Sci. (Med.), Principal Researcher, Department of High-Dose Chemotherapy with Bone Marrow Transplantation Unit, Hertzen Moscow Oncology Research Center; Prof., Chair of Oncology, Haematology and Radiation Therapy, Pirogov Russian National Research Medical University; Physician (haematology), City Clinical Hospital No. 52
117997, Moscow,
125284, Moscow,
123182, Moscow
T. A. Mitina
Russian Federation
Tatiana A. Mitina, Dr. Sci. (Med.), Prof., Head of the Department of Clinical Haematology and Immunotherapy
129110, Moscow
T. N. Tolstykh
Russian Federation
Tatiana N. Tolstykh, Cand. Sci. (Med.), Physician (haematology)
123182, Moscow
References
1. Molochkov A.V., Karateev D.E., Ogneva E.Yu., et al. Comorbidities and predicting the outcome of COVID-19: The treatment results of 13 585 patients hospitalized in the Moscow Region. Almanac of Clinical Medicine. 2020; 48(Suppl 1): S1–10. DOI: 10.18786/2072-0505-2020-48-040. (in Russian).
2. Al-Samkari H., Karp Leaf R.S., Dzik W.H., et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4): 489-500. DOI: 10.1182/blood.2020006520.
3. Interim guidelines “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)” Ministry of Health of the Russian Federation. 2020; Version 10. 08.02.2021: 261 p. (in Russian).
4. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5.
5. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020: 145–8. DOI: 10.1016/j.cca.2020.03.022.
6. Guan W., Ni Z., Hu Yu., et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708–20. DOI: 10.1056/NEJMoa2002032.
7. Chen W., Li Z., Yang B., et al. Delayed‐phase thrombocytopenia in patients of coronavirus disease 2019 (COVID‐19). Br J Haematol. 2020; 190(2): 179– 84. DOI: 10.1111/bjh.16885.
8. Yang X., Yang Q., Wang Y., et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost. 2020; 18(6): 1469– 72. DOI: 10.1111/jth.14848.
9. Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020; 99(6): 1205–8. DOI: 10.1007/s00277-020-04019-0.
10. Chan J.F., Kok K., Zhu Zh., et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1): 221–36. DOI: 10.1080/22221751.2020.1719902.
11. Yeager C.L., Ashmun R.A., Williams R.K., et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992; 357(6377): 420–2. DOI: 10.1038/357420a0.
12. Mehta P., McAuley D.F., Brown M., et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0.
13. Thachil J. What do monitoring platelet counts in COVID‐19 teach us? J Thromb Haemost. 2020; 18(8): 2071–2. DOI: 10.1111/jth.14879.
14. Roncati L., Ligabue G., Nasillo V., et al. A proof of evidence supporting abnormal immunothrombosis in severe COVID-19: Naked megakaryocyte nuclei increase in the bone marrow and lungs of critically ill patients. Platelets. 2020; 31(8): 1085–9. DOI: 10.1080/09537104.2020.1810224.
15. Xu P., Zhou Q., Xu J., et al. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020; 99(6): 1205–8. DOI: 10.1007/s00277-020-04019-0.
16. Pavord S., Thachil J., Hunt B.J., et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br J Haematol. 2020; 189(6): 1038–43. DOI: 10.1111/bjh.16775.
17. Galstyan G.M., Kolosova I.V., Model S.V., et al. Heparin-induced thrombocytopenia in oncohematological patients with myelotoxic thrombocytopenia. Gematologiya i transfuziologiya. 2015; 60(3): 53–7. (in Russian).
18. Joly B.S., Coppo P., Veyradier A. Thrombotic thrombocytopenic purpura. Blood. 2017; 129(21): 2836–46. DOI: 10.1182/blood-2016-10-709857.
19. Wada H., Matsumoto T., Suzuki K., et al. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb J. 2018; 16: 14. DOI: 10.1186/s12959-018-0168-2.
20. Vayne C., Guéry E., Rollin J., et al. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia. J Clin Med. 2020; 9(7): 2212. DOI: 10.3390/jcm9072212.
21. Zulfi qar A‐A., Lorenzo‐Villalba N. Immune thrombocytopenia in a patient with COVID‐19. N Engl J Med. 2020; 382: e43. DOI: 10.1056/NEJMc2010472.
22. Melikyan A.L., Pustoval E.I., Tsvetaeva N.V., et al. National clinical recommendations for diagnosis and therapy of idiopathic thrombocytopenic purpura (primary thrombocytopenic purpura) in adults (2016). Gematologiya i Transfuziologiya. 2017; 62(1–S1): 1–24. (in Russian).
23. Provan D., Arnold D., Bussell J., et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019; 3(22): 3780–817. DOI: 10.1182/bloodadvances.2019000812.
24. Neunert C., Terrell D.R., Arnold D.M., et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019; 3(23): 3829– 66. DOI: 10.1182/bloodadvances.2019000966.
25. Mithoowani S., Gregory-Miller K., Goy J., et al. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: A systematic review and meta-analysis. Lancet Haematol. 2016; 3(10): e489–96. DOI: 10.1016/S2352-3026(16)30109-0.
26. World Health Organization. COVID-19 Clinical management: Living guidance 25 January 2021. https://www.who.int/publications/i/item/clinical-management-of-covid-19
27. COVID-19 and immune thrombocytopenic purpura (Version 6.0). https://www.hematology.org/covid-19/covid-19-and-itp
28. Rumyantsev A.G. Main characteristics of intravenous immunoglobulin preparations and indications for their use. Pediatric Hematology/Oncology and Immunopathology. 2011; 10(2): 39–50. (In Russian).
29. FAI2 R /SFR/SNFMI/SOFREMIP/CRI/IMIDIATE consortium and contributors. Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: Data from the French RMD COVID-19 cohort of 694 patients. Ann Rheum Dis. 2020: annrheumdis-2020-218310. DOI: 10.1136/annrheumdis-2020-218310.
30. Catala Lopez F, Corrales I, Martin Serrano G, et al. Risk of thromboembolism with thrombopoietin receptor agonists in adult patients with thrombocytopenia: Systematic review and meta‐analysis of randomized controlled trials. Med Clin. 2012; 139(10): 421–9. DOI: 10.1016/j.medcli.2011.11.023.
31. Violi F., Pastori D., Cangemi R., et al. Hypercoagulation and antithrombotic treatment in Coronavirus 2019: A new challenge. Thromb Haemost. 2020; 120(6): 949–56. DOI: 10.1055/s-0040-1710317.
32. Klok F.A., Kruipb M.J.H.A., van der Meer N.J.M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145–7. DOI: 10.1016/j.thromres.2020.04.013.
33. Ekstrand C., Linder M., Bérangère Baricault B., et al. Impact of risk factors on the occurrence of arterial thrombosis and venous thromboembolism in adults with primary immune thrombocytopenia — Results from two nationwide cohorts. Thromb Res. 2019; 178: 124–31. DOI: 10.1016/j.thromres.2019.04.016.
34. Rodeghiero F., Stasi R., Giagounidis A., et al. Long-term safety and tolerability of romiplostim in patients with primary immune thrombocytopenia: A pooled analysis of 13 clinical trials. Eur J Haematol. 2013; 91(5): 423–36. DOI: 10.1111/ejh.12181.
35. Garabet L., Henriksson C.E., Lozano M.L., et al. Markers of endothelial cell activation and neutrophil extracellular traps are elevated in immune thrombocytopenia but are not enhanced by thrombopoietin receptor agonists. Thromb Res. 2020; 185: 119–24. DOI: 10.1016/j.thromres.2019.11.031.
36. Boyle S., White R.H., Brunson A., Wun T. Splenectomy and the incidence of venous thromboembolism and sepsis in patients with immune thrombocytopenia. Blood. 2013; 121(23): 4782–90. DOI: 10.1182/blood-2012-12-467068.
37. Cervera R., Tektonidou M.G., Espinosa G., et al. Task Force on Catastrophic Antiphospholipid Syndrome (APS) and Non-criteria APS Manifestations (II): Thrombocytopenia and skin manifestations. Lupus. 2011; 20(2): 174–81. DOI: 10.1177/0961203310395052.
38. Wong R., Saleh M., Khelif A., et al. Safety and efficacy of long‐term treatment of chronic/persistent ITP with eltrombopag: Final results of the EXTEND study. Blood. 2017; 130(23): 2527–36. DOI: 10.1182/blood-2017-04-748707.
39. Lansbury L., Rodrigo C., Leonardi Bee J., et al. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2019; 2(2): CD010406. DOI: 10.1002/14651858.CD010406.pub3.
40. Delaney J.W., Pinto R., Long J., et al. The infl uence of corticosteroid treatment on the outcome of infl uenza A(H1N1pdm09) related critical illness. Crit Care. 2016; 20: 75. DOI: 10.1186/s13054-016-1230-8.
41. Arabi Y.M., Mandourah Y., Al-Hameed F., et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir
42. Wang T., Chen R., Liu C., et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020; 7(5): e362–3. DOI: 10.1016/S2352-3026(20)30109-5.
43. Kipshidze N., Dangas G., White C.J., et al. Viral coagulopathy in patients with COVID-19: Treatment and care. Clin Appl Thromb Hemost. 2020; 26: 1076029620936776. DOI: 10.1177/1076029620936776.
44. Horby P., Lim W.S., Emberson J.R., et al. Dexamethasone in hospitalized patients with COVID-19 — Preliminary report RECOVERY Collaborative Group. N Engl J Med. 2020; NEJMoa2021436. DOI: 10.1056/NEJMoa2021436.
45. Mansour H., Saad A., Azar M., Khoueiry P. Amoxicillin/clavulanic acid-induced thrombocytopenia. Hosp Pharm. 2014; 49(10): 956–60. DOI: 10.1310/hpj4910-956.
46. van den Bemt P.M., Meyboom R.H., Egberts A.C. Drug-induced immune thrombocytopenia. Drug Saf. 2004; 27(15): 1243–52. DOI: 10.2165/00002018-200427150-00007.
47. Vayne C., Guéry E.A., Rollin J., et al. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia. J Clin Med. 2020; 9(7): 2212. DOI: 10.3390/jcm9072212.
48. Komeda Y., Sakurai T., Sakai K., et al. Refractory case of ulcerative colitis with idiopathic thrombocytopenic purpura successfully treated by Janus kinase inhibitor tofacitinib: A case report. World J Clin Cases. 2020; 8(24): 6389–95. DOI: 10.12998/wjcc.v8.i24.6389.
49. Kuter D.J., Bussel J.B., Lyons R.M., et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: A double-blind randomised controlled trial. Lancet. 2008; 371(9610): 395–403. DOI: 10.1016/S0140-6736(08)60203-2.
50. Birocchi S., Podda G.M., Manzoni M., et al. Thrombopoietin receptor agonists for the treatment of primary immune thrombocytopenia: A meta-analysis and systematic review. Platelets. 2020: 1–11. DOI: 10.1080/09537104.2020.1745168.
51. Tarantino M.D., Fogarty P., Mayer B., et al. Efficacy of eltrombopag in management of bleeding symptoms associated with chronic immune thrombocytopenia. Blood Coagul Fibrinolysis. 2013; 24(3): 284–96. DOI: 10.1097/MBC.0b013e32835fac99.
52. Newland A., Godeau B., Priego V., et al. Remission and platelet responses with romiplostim in primary immune thrombocytopenia: Final results from a phase 2 study. Br J Haematol. 2016; 172(2): 262–73. DOI: 10.1111/bjh.13827.
53. Xie Y., Cao S., Dong H., et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia. J Infect. 2020; 81(2): 318–56. DOI: 10.1016/j.jinf.2020.03.044.
54. Schulze-Koops H., Krueger K., Vallbracht I., et al. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann Rheum Dis. 2020: annrheumdis-2020-218075. DOI: 10.1136/annrheumdis-2020-218075.
55. Mohammed A.H., Blebil A., Dujaili J., Rasool-Hassan B.A. The risk and impact of COVID-19 pandemic on immunosuppressed patients: Cancer, HIV, and solid organ transplant recipients. AIDS Rev. 2020; 22(3): 151–7. DOI: 10.24875/AIDSRev.20000052.
56. Spahr J.E., Rodgers G.M. Treatment of immune-mediated thrombocytopenia purpura with concurrent intravenous immunoglobulin and platelet transfusion: A retrospective review of 40 patients. Am J Hematol. 2008; 83(2): 122–5. DOI: 10.1002/ajh.21060.
57. Logunov D.Y., Dolzhikova I.V., Zubkova O.V., et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020; 396(10255): 887–97. DOI: 10.1016/S0140-6736(20)31866-3.
58. Raddi N., Vigant F., Wagner-Ballon O., et al. Pseudotyping serotype 5 adenovirus with the fiber from other serotypes uncovers a key role of the fiber protein in adenovirus 5-induced thrombocytopenia. Hum Gene Ther. 2016; 27(2): 193–201. DOI: 10.1089/hum.2015.154.
59. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; Available online 2 February 2021. DOI: 10.1016/S0140-6736(21)00234-8.
60. “EpiVacCorona” Vaccine for the Prevention of COVID-19. Instructions for use. Registration certificate N 006504, 13.10.2020. http://base.garant.ru/files/base/74754034/2622682163.pdf (In Russian).
Review
For citations:
Semochkin S.V., Mitina T.A., Tolstykh T.N. Management of immune thrombocytopenia during COVID-19 pandemic. Russian journal of hematology and transfusiology. 2021;66(1):20-36. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-1-20-36