Preview

Russian journal of hematology and transfusiology

Advanced search

Comparative characteristics of bone marrow cell composition, stroma, and trabecular bone in allogenic hematopoietic stem cell transplantation in patients with primary myelofibrosis

https://doi.org/10.35754/0234-5730-2021-66-1-68-78

Abstract

Introduction. Primary myelofibrosis (PMF) is a clonal disease violating the cell composition, histological topography and stroma in bone marrow (BM). Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy in PMF.

Aim — description of change in the haematopoietic tissue cell composition and stroma, as well as in trabecular bone in allo-HSCT patients with fibrotic PMF.

Materials and methods. We studies 24 trephine biopsy samples from nine PMF patients with allo-HSCT at the intervals: I — 1 month prior to, II — past 1–3 months and III — past 4–6 months from allo-HSCT. BM trephine biopsy slides were prepared in a standard histological assay with haematoxylin—eosin and additional staining with Gomori’s silver and Masson’s trichrome. Morphological change was evaluated in reticulin and collagen stroma, bone trabeculae, cellularity and topography of haematopoietic tissue.

Results. The BM trephine biopsies of interval I were morphologically distinguished in three types by haematopoietic cellularity, stromal and trabecular sclerotic change. Post-transplant intervals II and III (3–6 months after allo-HSCT) did not reveal these types but showed an evident myelofibrosis and osteosclerosis reduction and signs of a restoring bone remodelling cycle. Myelopoietic lineages recovered in stages: the erythroid germ restored in three, granulocytic — in six months, and megakaryocytic cellularity did not fully recover in six months. Myelopoietic cellularity recovery outpaced blood recovery, which may be due to induced myelodysplasia or disruption of stromal niches.

Conclusion. Allo-HSCT leads to the disappearance of PMF-pathognomonic BM morphology reflecting a histological remission. The reduction of myelofibrosis and osteosclerosis and normalisation of the trabecular bone remodelling cycle in post-transplant periods indicates an impact of cell microenvironment on PMF pathogenesis and warrants research into the composition and histological topography of cell microenvironment in PMF.

About the Authors

D. I. Chebotarev
National Research Center for Hematology
Russian Federation

Dmitry I. Chebotarev, Pathologist, Pathology Department

125167, Moscow



A. M. Kovrigina
National Research Center for Hematology
Russian Federation

Alla M. Kovrigina, Dr. Sci. (Biol.), Head of Pathology Department

125167, Moscow



A. L. Melikyan
National Research Center for Hematology
Russian Federation

Anahit L. Melikyan, Dr. Sci. (Med.), Head of Department of Standardization of Treatment Methods

125167, Moscow



L. A. Kuzmina
National Research Center for Hematology
Russian Federation

Larisa A. Kuzmina, Cand. Sci. (Med.) Head of Department of Intensive High-Dose Chemotherapy and Bone Marrow Transplantation

125167, Moscow



References

1. Swerdlow S., Campo E., Harris N., et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon France: IARC Press; 2017: 174–7.

2. Schieber M., Crispino J.D., Stein B. Myelofibrosis in 2019: Moving beyond JAK2 inhibition. Blood Cancer J. 2019; 9: 74. DOI: 10.1038/s41408-019-0236-2.

3. Harrison C.N., Schaap N., Mesa R.A. Management of myelofibrosis after ruxolitinib failure. Ann Hematol. 2020; 99: 1177–91. DOI: 10.1007/s00277-020-04002-9.

4. Bose P., Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: What is next? Blood. 2017; 130(2): 115–25. DOI: 10.1182/blood-2017-04-742288.

5. Ballen K., Shrestha S., Sobocinski K., et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2019; 16(3): 358–67. DOI: 10.1016/j.bbmt.2009.10.025.

6. McLornan D., Yakoub-Agha I., Robin M., et al. State-of-the-art review: Allogeneic stem cell transplantation for myelofibrosis in 2019. Haematologica. 2019; 104: 659–68. DOI: 10.3324/haematol.2018.206151.

7. Gangat N., Caramazza D., Vaidya R., et al. DIPSS Plus: A refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011; 29(4): 392–7. DOI: 10.1200/JCO.2010.32.2446.

8. Guglielmelli P., Lasho T., Rotunno G., et al. MIPSS70: Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018; 36(4): 310–8. DOI: 10.1200/JCO.2017.76.4886.

9. Melikyan A.L., Kovrigina A.M., Subortseva I.N., et al. National сlinical recommendations on diagnosis and treatment of Ph-negative myeloproliferative diseases (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya I Transfusiologiya. 2018; 63(3): 275–315. DOI 10.25837/HAT.2019.51.8. (In Russian).

10. Barabanschikova M.V., Morozova E.V., Baykov V.V., et al. Allogeneic haematopoietic stem cell transplantation in myelofibrosis. Klinicheskaya Оnkogematologiya. 2016; 9(3):297–86. (In Russian).

11. Thiele J., Kvasnicka H.M., Facchetti F., et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005; 90(8): 1128–32.

12. Baccarani M., Deininger M.W., Rosti G., et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013; 122(6): 872–84. DOI: 10.1182/blood-2013-05-501569.

13. Keohane E., Smith L., Rodak B., et al. Rodak’s hematology: Clinical principles and applications, 5th ed. St. Louis: Elsevier / Saunders; 2016.

14. Gruzdev G.P. Acute radiation-induced bone marrow syndrome. Moscow, Medicine, 1988: 144 p. (In Russian).

15. Denisov-Nikolsky U.I., Doktorov A.A., Pak G.C. Morphology and function of endosteum in bone remodelling. Archiv Pathologii. 1998; 60(5): 19. (In Russian).

16. Kirillova I.A. Osseous tissue as backbone of osteoplastic reconstruction materials. Hirurgiya Pozvonochnika. 2011:(1):68–74. DOI: 10.14531/ss2011.1.68-74. (In Russian).

17. Schmidt A., Blanchet O., Dib M., et al. Bone changes in myelofibrosis with myeloid metaplasia: A histomorphometric and microcomputed tomographic study. Eur J Haematol. 2007; 78: 500–9. DOI: 10.1111/j.1600-0609.2007.00852.x.

18. Ciovacco W.A., Cheng Y.H., Horowitz M.C., Kacena M.A. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem. 2010; 109(4): 774–81. DOI: 10.1002/jcb.22456.

19. Malara A., Abbonante V., Di Buduo C.A., et al. The secret life of a megakaryocyte: Emerging roles in bone marrow homeostasis control. Cell Mol Life Sci. 2015; 72: 1517–36. DOI: 10.1007/s00018-014-1813-y.


Review

For citations:


Chebotarev D.I., Kovrigina A.M., Melikyan A.L., Kuzmina L.A. Comparative characteristics of bone marrow cell composition, stroma, and trabecular bone in allogenic hematopoietic stem cell transplantation in patients with primary myelofibrosis. Russian journal of hematology and transfusiology. 2021;66(1):68-78. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-1-68-78

Views: 785


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)