Preview

Russian journal of hematology and transfusiology

Advanced search

Using of pyrosequencing method for the detection and quantitative determination of mutant JAK2 exon 12 allele burden

https://doi.org/10.18821/0234-5730-2016-61-4-196-200

Abstract

Somatic mutations in codons 532--547 of JAK2 exon 12 are highly specific to confirm the diagnosis of polycythemia vera (PV). The aim of this study was to develop the pyrosequencing method for the detection and quantification of JAK2 exon 12 allele burden. The nucleotide sequencing of the JAK2 exon 12 fragment was carried out with the use of “PyroMark Q24”. To verify the presence of mutations, the DNA sequences extracted from the clinical samples were cloned and obtained clones were sequenced with the use of reagents and equipment of the “Applied Biosystems” (USA). A sample containing the mutation was analyzed again after confirming the presence of mutations in clones by Sanger sequencing with “PyroMark Q24” for the quantification of the JAK2 exon 12 allele burden. Among 48 of JAK2 V617F-negative PV patients, who had a high clinical and hematological probability of PV diagnosis, a N542-E543 del mutation of JAK2 in exon 12 has been detected in the 62-years old male patient. The detection and quantification of the JAK2 exon 12 allele burden by virtue of using a pyrosequencing method for this patient was carried out three times from August 2013 to June 2015. Our results show the JAK2 N542-E543 del allele burden to increase more than twice during 23 months of following up of the patient. These data suggest about increase of the number of the transformed clonal cells. The proposed method allows detecting and carrying out quantitative determination of the mutant JAK2 exon 12 allele burden for monitoring the efficacy of the therapy.

About the Authors

T. N. Subbotina
Krasnoyarsk branch of the Federal State budgetary Institution «Hematology Research Center» Department of Health; Siberian Federal University
Russian Federation

Subbotina Tatiana N., BD, PhD, assistant professor of the Department of Medical Biology of the Siberian Federal University; senior researcher Krasnoyarsk branch of the Federal State budgetary Institution Hematology Research Center

Krasnoyask, 660036



E. A. Dunaeva
Federal Budget Institute of Science «Central research institute for Epidemiology»
Russian Federation
111123, Moscow


K. O. Mironov
Federal Budget Institute of Science «Central research institute for Epidemiology»
Russian Federation
111123, Moscow


O. P. Dribnokhodova
Federal Budget Institute of Science «Central research institute for Epidemiology»
Russian Federation
111123, Moscow


A. E. Harsekina
Krasnoyarsk branch of the Federal State budgetary Institution «Hematology Research Center» Department of Health
Russian Federation
660036, Krasnoyask


E. V. Vasiyliev
Krasnoyarsk regional hospital
Russian Federation
660022, Krasnoyarsk


V. A. Khorzhevskyi
Krasnoyarsk State Regional Bureau of Pathology
Russian Federation
660022, Krasnoyarsk


I. A. Olkhovskiy
Krasnoyarsk branch of the Federal State budgetary Institution «Hematology Research Center» Department of Health; Krasnoyask Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
660036, Krasnoyarsk


G. A. Shipulin
Federal Budget Institute of Science «Central research institute for Epidemiology»
Russian Federation
111123, Moscow


References

1. Tefferi A., Vardiman J.W. Classification and diagnosis of myeloproliferative neoplasms: The 2008 WHO criteria and point-ofcare diagnostic algorithms. Leukemia. 2008; 22(1): 14–22.

2. Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464): 1054–61.

3. Catalog of somatic mutations in cancer. http://cancer.sanger.ac.uk/cosmic

4. Scott L.M. The JAK2 exon 12 mutations: a comprehensive review. Am. J. Hematol. 2011; 86(8): 668–76.

5. Wu Z., Zhang X., Xu X., Chen Y., Hu T., Kang Z., et al. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J. Hematol. Oncol. 2014; 7: 48. doi: 10.1186/s13045-014-0048-6.

6. Pardanani A., Lasho T.L., Finke C., Hanson C.A., Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007; 21(9): 1960–3.

7. Passamonti F., Elena C., Schnittger S., Skoda R.C., Green A.R., Girodon F., et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011; 117(10): 2813–6.

8. Pietra D., Li S., Brisci A., Passamonti F., Rumi E., Theocharides A., et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008; 111(3): 1686–9.

9. Scott L.M., Tong W., Levine R.L., Scott M.A., Beer P.A., Stratton M.R., et al. Green AR. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 2007; 356(5): 459–68.

10. Percy M.J., Scott L.M., Erber W.N., Harrison C.N., Reilly J.T., Jones F.G., et al. The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica. 2007; 92(12): 1607–14.

11. Jones A.V., Cross N.C., White H.E., Green A.R., Scott L.M. Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica. 2008; 93(10): 1560–4.

12. Ugo V., Tondeur S., Menot M.L., Bonnin N., Le Gac G., Tonetti C., et al.; French Intergroup of Myeloproliferative disorders. Interlaboratory development and validation of a HRM method applied to the detection of JAK2 exon 12 mutations in polycythemia vera patients. PLoS One. 2010; 5(1): e8893.

13. Schnittger S., Bacher U., Haferlach C., Geer T., Müller P., Mittermüller J., et al. Detection of JAK2 exon 12 mutations in 15 patients with JAK2V617F negative polycythemia vera. Haematologica. 2009; 94(3): 414–8.

14. Laughlin T.S., Moliterno A.R., Stein B.L., Rothberg P.G. Detection of exon 12 Mutations in the JAK2 gene: enhanced analytical sensitivity using clamped PCR and nucleotide sequencing. J. Mol. Diagn. 2010; 12(3): 278–82.

15. Furtado L.V., Weigelin H.C., Elenitoba-Johnson K.S., Betz B.L. A multiplexed fragment analysis-based assay for detection of JAK2 exon 12 mutations. J. Mol. Diagn. 2013; 15(5): 592–9.

16. Dunaeva E.A., Mironov K.O., Dribnokhodova O.P., Subbotina T.N., Bashmakova E.E., Olkhovskiy I.A., Shipulin G.A. The quantitative testing of V617F mutation in gen JAK2 using pyrosequencing technique. Russian Clinical Laboratory Diagnostics Journal(Klinicheskaya laboratornaya diagnostika). 2014; 59(11): 60–3. (in Russian)

17. Mironov K.O., Dunaeva E.A., Dribnokhodova O.P., Shipulin G.A. Detection of genetic polymorphism with the use of Genetic analysis based on pyrosequencing PYROMARK Q24. Directory manager of clinical laboratory diagnostics. Russian Journal (Spravochnik zaveduyushchego KDL). 2011; 4: 39–48. (in Russian)

18. Lillie R.D. Histopathologic technic and practical histochemistry. New York: McGraw Hill Book Co; 1965.

19. Kjær L., Westman M., Hasselbalch Riley C., Høgdall E., Weis Bjerrum O., Hasselbalch H. A highly sensitive quantitative real-time PCR assay for determination of mutant JAK2 exon 12 allele Burden. PLoS One. 2012; 7(3): 1–8.

20. Theocharides A., Passweg J.R., Medinger M., Looser R., Li S., Hao-Shen H., et al. The allele burden of JAK2 mutations remains stable over several years in patients with myeloproliferative disorders. Haematologica. 2008; 93(12): 1890–3.

21. Li S., Kralovics R., De Libero G., Theocharides A., Gisslinger H., Skoda R.C. Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood. 2008; 111(7): 3863–6.

22. Tsiatis A.C., Norris-Kirby A., Rich R.G., Hafez M.J., Gocke C.D., Eshleman J.R., et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J. Mol. Diagn. 2010; 12(4): 425–32.

23. Dribnokhodova O.P., Mironov K.O., Dunaeva E.A., Demidova I.A., Barinov A.A., Voytsekhovskaya Ya.A., et al. The detection of activating somatic mutations in gene kras using pyrosequencing technique. Russian Clinical Laboratory Diagnostics Journal (Klinicheskaya laboratornaya diagnostika). 2013; 58(6): 49–51. (in Russian)

24. Xie G., Xie F., Wu P., Yuan X., Ma Y., Xu Y., et al. The mutation rates of EGFR in non-small cell lung cancer and KRAS in colorectal cancer of Chinese patients as detected by pyrosequencing using a novel dispensation order. J. Exp. Clin. Cancer Res. 2015; 34(1): 63. doi: 10.1186/s13046-015-0179-9.

25. MilburyС.A., Li J., Makrigiorgos G.M. Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res. 2011; 39(1): e2. doi: 10.1093/nar/gkq899/


Review

For citations:


Subbotina T.N., Dunaeva E.A., Mironov K.O., Dribnokhodova O.P., Harsekina A.E., Vasiyliev E.V., Khorzhevskyi V.A., Olkhovskiy I.A., Shipulin G.A. Using of pyrosequencing method for the detection and quantitative determination of mutant JAK2 exon 12 allele burden. Russian journal of hematology and transfusiology. 2016;61(4):196-200. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-4-196-200

Views: 944


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)