Preview

Russian journal of hematology and transfusiology

Advanced search

Influence of the shock-wave pulses of microsecond-range on tumor cells

https://doi.org/10.18821/0234-5730-2016-61-2-81-87

Abstract

The possibility of destruction or structural changes of tumor cells exposed to short (microsecond range) shock-wave pulses was investigated. It was shown that changes in the structural organization of the nuclear chromatin were observed under the influence of shock-wave pulses of microsecond range on large tumor cells. The effect of tumor cells damage was achieved, normal cells remained to be intact.

About the Authors

A. I. Vorobiev
Center for Theoretical Problems of Physico-Chemical Pharmacology; National Research Center for Hematology
Russian Federation

Researcher ID: L-2684-2013

Moscow, 119991;

Moscow, 125167

 



L. A. Gorgidze
Center for Theoretical Problems of Physico-Chemical Pharmacology
Russian Federation

Researcher ID: P-8181-2014

Moscow, 119991



V. N. Zakharov
Moscow Radiotechnical Institute of Russian Academy of Sciences
Russian Federation
Moscow, 117519


V. G. Chechetkin
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Russian Federation
Moscow, 125047


O. S. Kremenetskaya
Center for Theoretical Problems of Physico-Chemical Pharmacology
Russian Federation

Researcher ID: N-6388-2014

Moscow, 119991



A. A. Shevelev
National Research Center for Hematology
Russian Federation
Moscow, 125167


N. E. Shklovskiy-Kordi
National Research Center for Hematology
Russian Federation

Shklovskiy-Kordi Nikita E., BD, PhD, senior researcher Hematological Research Center

ResearcherID is: F-7980-2016

125167, Moscow

 



References

1. Burov A.K., Andreevskaya G.D. Exposure to ultrahigh intensity acoustic waves on malignant tumors in animals and humans. Reports of the Academy of Sciences of the USSR. Russian journal (Doklady akademii nauk SSSR) 1956; 106(3): 445–8. (in Russian)

2. Burov V.A., Dmitrieva N.P., Rudenko O.V. The non-linear ultrasound: the destruction of microscopic biological complexes and non-thermal effects on malignant tumor. Reports of the Academy of Sciences. Russian journal (Doklady akademii nauk). 2002; 383(3): 401–4. (in Russian)

3. Vorobiev A.I., Pyatkin E.K. Tumor progression in leukemia and reticulosis. In: I.A.Kassirskiy, ed. Genetics in hematology. Moscow: Mediсina; 1967: 316–27. (in Russian)

4. Vorobiev A.I. Tumor progression and pathogenesis of leukemia a few questions. Dis. Moscow; 1968. (in Russian)

5. Vorobiev A.I. Tumor progression in the pathogenesis of leukemia. Clinical Medicine. Russian journal (Klinicheskaya meditsina). 1970; 4: 62–9. (in Russian)

6. Vorobiev A.I., Brilliant M.D. Changing the nuclei pathological cell size. Materials of scientifc-practical works of the 6th Clinical Hospital of the Ministry of Health SSSR. Moscow; 1968. (in Russian)

7. Vorobiev A.I., Brilliant M.D. Communication changes nuclei abnormal cells with some features of the pathogenesis of chronic lymphocytic leukemia. In: Modern problems of chronic lymphocytic leukemia: Proceedings of the: regionary physicians and hematologists conference. Sochi; 1972. (in Russian)

8. Kremkau F.W., Kaufmann J.S., Walker M.M., Burch P.G., Spurr C.L. Ultrasonic enhancement of nitrogen mustard cytotoxicity in mouse leukemia. Cancer. 1976; 37(4): 1643–7.

9. Rosenthal I., Sostaric J.Z., Riesz P. Sonodynamic therapy – a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004; 11(6): 349–63.

10. Yang S., Wang P., Wang X., Zhang K., Zhang X., Liu Q. Effcacy of combined therapy with paclitaxel and lowlevel ultrasound in human chronic myelogenous leukemia cell line K562. J. Drug. Target. 2013; 21(9): 874–84. doi: 10.3109/1061186X.2013.830309.

11. He H., Yu T., Zhang Y. The interaction between a drug and ultrasound in sonochemotherapy against ovarian cancers. Ultraschall Med. 2012; 33(3): 275–82. doi: 10.1055/s-0029-1245876.

12. Espinosa S., Asproulis N., Drikakis D. Chemotherapy effciency increase via shock wave interaction with biological membranes: a molecular dynamics study. Microfluidics and nanofluidics. 2014; 16(4): 613–22. ISSN 1613-4982

13. Khokhlova V.A., Fowlkes J.B., Roberts W.W., Schade G.R., Xu Z., Khokhlova T.D., et al. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. Int. J. Hyperthermia. 2015; 31(2): 145–62. doi: 10.3109/02656736.2015.1007538.

14. Randazzo R.F., Chaussy C.G., Fuchs G.J., Bhuta S.M., Lovrekovich H., deKernion J.B. The in vitro and in vivo effects of extracorporeal shock waves on malignant cells. Urol. Res. 1988; 16(6): 419–26.

15. Delius M. Biological effect of shock waves–more than “just” lithotripsy? Zentralbl Chir. 1995; 120(4): 259–73.

16. Lukes P., Fernández F., Gutiérrez-Aceves J., Fernández E., Alvarez U.M., Sunka P., et al. Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves. 2015; 26(1): 1–23. doi: 10.1007/s00193-015-0577-0

17. Benes J., Pouckova P., Zeman J., Zadinova M., Sunka P., Lukes P., Kolarova H. Effects of tandem shock waves combined with photosan and cytostatics on the growth of tumours. Folia Biol. (Praha). 2011; 57(6): 255–60.

18. Clayman R.V., Long S., Marcus M. High-energy shock waves: in vitro effects. Am. J. Kidney Dis. 1991; 17(4): 436–44.

19. Hoshi S., Orikasa S., Suzuki K., Saitoh T., Takahashi T., Yoshikawa K., et al. High-energy underwater shock wave treatment for internal iliac muscle metastasis of prostatic cancer: a frst clinical trial. Jpn. J. Cancer Res. 1995; 86(5): 424–8.

20. Marano F., Argenziano M., Frairia R., Adamini A., Bosco O., Rinella L., et al. Doxirubicin-loaded nanobubbles combined with exstracorporel shok waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid. 2016: http://www.amedeo.com/medicine/thy/thy2.htm

21. Stephenson T.J. Extracorporeal gall bladder lithotripsy – a review of tissue and cellular effects. J. Pathol. 1996: 179(1): 4–9.

22. Plaisier P.W., van der Hul R.L., Terpstra O.T., Bruining H.A. Current role of extracorporeal shockwave therapy in surgery. Br. J. Surg. 1994; 81(2): 174–81.

23. Mastikhin I.V., Nikolin V.P., Cheslenko V.S., Zelentsov E.L., Mayer V.A., Dikalov C.I. Increasing the sensitivity of tumor cells to cyclophosphamide in the results, those shock-wave action. Reports of the Academy of Sciences. Russian journal (Doklady akademii nauk). 1995; 342(2): 262–4. (in Russian)

24. Teslenko V.S. The effect of the shock waves and cytostatic drugs on tumor cells. Proceedings of the 3rd CIS scientifc seminar on the acoustics of inhomogeneous media, Institute of Hydrodynamics n.a. M.A. Lavrentieva of Siberian Branch of the Russian Academy of Sciences. 1995; Issue 110: 170–6. (in Russian)


Review

For citations:


Vorobiev A.I., Gorgidze L.A., Zakharov V.N., Chechetkin V.G., Kremenetskaya O.S., Shevelev A.A., Shklovskiy-Kordi N.E. Influence of the shock-wave pulses of microsecond-range on tumor cells. Russian journal of hematology and transfusiology. 2016;61(2):81-87. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-2-81-87

Views: 373


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)