Effect of increasing the number of repeated measurements on the accuracy of determining factor VIII activity and fibrinogen concentrations in blood plasma
https://doi.org/10.35754/0234-5730-2024-69-1-32-39
Abstract
Introduction. Highly accurate determination of hemostatic indices of plasma and blood plasma products is important for industrial transfusiology and monitoring the effi cacy of their clinical application. Repeated measurements increase statistical power, thereby reducing the likelihood of committing a second-order error, which is described as a false negative result and occurs when a test fails to detect a truly existing effect.
Aim: to evaluate the effect of increasing the number of repeated measurements on the accuracy of factor VIII activity and fi brinogen concentrations in donor plasma.
Materials and methods. Human donor plasma used in the study was obtained by centrifugation of whole blood. The criterion for inclusion of biomaterial in the study was the presence of a non-repeatable combination of donor characteristics: sex, age, blood group and Rhesus affi liation by the presence of D antigen. Whole blood donors for this work were male and female aged between 38 and 53 years with groups: O(I), A(II) and B(III). 27 repeated measurements of factor VIII activity by the one-stage clotting method and fi brinogen concentrations by the Clauss clotting method were performed on automatic coagulometer ACL TOP 300 with HemosIL reagents.
Results. For factor VIII activity, the difference in values recorded in repeated measurements reached 20 IU/100 ml, and for fi brinogen concentrations the maximum difference was 0.29 g/L. The calculation of the change in the size of the confi dence interval with increasing number of repeated measurements is presented. While the decrease in size from the second to the fourth repeated measurement averaged 83.5 % for the measurement of factor VIII activity and 61.7 % for fi brinogen concentrations, from the fi fth to the seventh it was 16.9 % and 21.5 %, respectively.
Conclusions. Despite the pre-analytical measures taken to reduce random error, blood plasma parameters of the same donation can take values in a wide range. Increasing the number of repeat measurements from one to three in the case of measuring factor VIII activity and fi brinogen concentrations is an effective means of improving the accuracy of these indices. However, with subsequent repeated measurements there will be a decrease in statistical power growth.
About the Authors
V. N. LemondzhavaRussian Federation
Vakhtang N. Lemondzhava, Senior Researcher
124482, Moscow
S. V. Sidorkevich
Russian Federation
Sergey V. Sidorkevich, Dr. Sci. (Med.), Professor, Director
191024, St. Petersburg
A. D. Kasyanov
Russian Federation
Andrey D. Kasyanov, Cand. Sci. (Med.), Leading Researcher
191024, St. Petersburg
References
1. Galstyan G.M., Gaponova T.V., Zhiburt E.B., et al. Clinical guidelines for cryoprecipitate transfusions. Gematologiya I transfusiologiya. 2020; 65(1): 87–114. (In Russian). DOI: 10.35754/0234-5730-2020-65-1-87-114.
2. Khurdin V.V., Berkovskiy A.L., Sergeeva E.V., Suvorov A.V. Production of purifi ed fi brinogen concentrate. Gematologiya I transfusiologiya. 2019; 64(1): 73–8. (In Russian). DOI: 10.35754/0234-5730-2019-64-1-73-78.
3. Zhiburt E.B., Chemodanov I.G., Shestakov E.A. Cryoprecipitate production in Russia: past, present and future. Gematologiya I transfusiologiya. 2019; 64(1): 16–20. (In Russian). DOI: 10.35754/0234-5730-2019-64-1-16-20.
4. Pshenisnov K.V., Aleksandrovich Yu.S. Massive blood loss in pediatric practice. Gematologiya I transfusiologiya. 2020; 65(1): 70–86. (In Russian). DOI: 10.35754/0234-5730-2020-65-1-70-86.
5. Roubinian N., Kleinman S., Murphy E.L., et al. Methodological considerations for linked blood donor-component-recipient analyses in transfusion medicine research. ISBT Sci Ser. 2020; 15(1): 185–93. DOI: 10.1111/voxs.12518.
6. Lemondzhava V.N., Chechetkin A.V., Gudkov A.G., et al. Thermolability of factor VIII in donor fresh frozen blood plasma. Gematologiya I transfusiologiya. 2021; 66(4): 593–609. (In Russian). DOI: 10.35754/0234-5730-2021-66-4-593-609.
7. Bostrom F., Ekemar L., Olsson D., et al. Rapid thawing of fresh-frozen plasma with radio wave-based thawing technology and effects on coagulation factors during prolonged storage at 4°C. Vox Sang. 2009; 97(1): 34–8. DOI: 10.1111/j.1423-0410.2009.01175.x.
8. Kuta P., Melling N., Zimmermann R., et al. Clotting factor activity in fresh frozen plasma after thawing with a new radio wave thawing device. Transfusion. 2019; 59(5): 1857–61. DOI: 10.1111/trf.15246.
9. Von Heymann C., Pruss A., Sander M., et al. Thawing procedures and the time course of clotting factor activity in fresh-frozen plasma: A controlled laboratory investigation. Anesth Analg. 2006; 103(4): 969–74; DOI: 10.1213/01.ANE.0000240416.56803.5B.
10. Tholpady A., Monson J., Radovancevic R., et al. Analysis of prolonged storage on coagulation Factor (F)V, FVII, and FVIII in thawed plasma: is it time to extend the expiration date beyond 5 days? Transfusion. 2012; 53(3): 645–50. DOI: 10.1111/j.1537-2995.2012.03786.x.
11. Dhantole L., Dubey A., Sonker A. A study on factors infl uencing the hemostatic potential of fresh frozen plasma. Asian J Transfus Sci. 2019; 13(1): 23–9. DOI: 10.4103/ajts.AJTS_139_17.
12. Zwagemaker A., Kloosterman F., Gouw S., et al. Little discrepancy between one-stage and chromogenic factor VIII (FVIII)/IX assays in a large international cohort of persons with nonsevere hemophilia A and B. J Thromb Haemost. 2023; 21(4): 850–61. DOI: 10.1016/j.jtha.2022.11.040.
13. Peyvandi F., Oldenburg J., Friedman K.D. A critical appraisal of one‐stage and chromogenic assays of factor VIII activity. J Thromb Haemost. 2016; 14(2): 248–61. DOI: 10.1111/jth.13215.
14. Van Moort I., Meijer P., Priem-Visser D., et al. Analytical variation in factor VIII onestage and chromogenic assays: Experiences from the ECAT external quality assessment programme. Haemophilia. 2019; 25(1): 162–9. DOI: 10.1111/hae.13643.
15. McFarlane A., Aslan B., Raby A., et al. Internal Quality Control Practices in Coagulation Laboratories: recommendations based on a patterns-of-practice survey. Int J Lab Hematol. 2015; 37(6): 729–38. DOI: 10.1111/ijlh.12397.
16. Padmore R., Petersen K., Campbell C., et al. Practical application of mathematical calculations and statistical methods for the routine haematology laboratory. Int J Lab Hematol. 2022; 44(l): 11–20. DOI: 10.1111/ijlh.13934.
17. Lemondzhava V.N. Effect of forced hydrodynamic and mechanical impacts on speed of technological process of defrosting of blood plasma. Biomedicinskaya Radioelectronika. 2018; 11: 48–55. (In Russian). DOI: 10.18127/j15604136-201811-08.
18. Lemondzhava V.N., Lemondzhava T.Yu., Gudkov A.G., et al. Technological optimization of the process of preparation of fresh frozen blood plasma to transfusion in devices for its thermal processing. AIP Conf Proc. 2023; 1(2605): 020013- 1–020013-5. DOI: 10.1063/5.0110400.
19. Isaacs M., Scheuermaier K., Levy B., et al. In vitro effects of thawing freshfrozen plasma at various temperatures. Clin Appl Thromb Hemost. 2004; 10(2): 143–8. DOI: 10.1177/107602960401000204.
20. Marquez C. P., Petersen J. R., Okorodudu A. O. Critically low sodium levels due to concentration gradients formed in patient samples after undergoing a freeze-thaw cycle. Clin Chim Acta. 2018; 484: 218–22. DOI: 10.1016/j.cca.2018.05.020.
21. Lima-Oliveira G., Adcock D.M., Salvagno G.L., et al. Mixing of thawed coagulation samples prior to testing: Is any technique better than another? Clin Biochem. 2016; 49(18): 1399–401. DOI: 10.1016/j.clinbiochem.2016.10.009.
22. Fijnvandraat K., Cnossen M.H., Leebeek F.W., Peters M. Diagnosis and management of haemophilia. BMJ. 2012; 344: e2707. DOI: 10.1136/bmj.e2707.
23. Lowe A.E., Jones R., Kitchen S., et al. Multicenter performance evaluation and reference range determination of a new one-stage factor VIII assay. J Clin Lab Anal. 2022; 36: e24294. DOI:10.1002/jcla.24294.
24. Akkaya E., Hatiboglu S., Koc B., et al. Evaluation of Chromogenic Factor VIII Assay Compared with One-Stage Clotting Assay. Clin Lab. 2020; 66(10): 191145. DOI: 10.7754/Clin.Lab.2020.191145.
25. Chandler W.L., Ferrell C., Lee J., et al. Comparison of three methods for measuring factor VIII levels in plasma. Am J Clin Pathol. 2003; 120(1): 34–9. DOI: 10.1309/C8T8-YNB4-G3W4-5PRF.
26. Farrugia A. Factor VIII manufactured from plasma—the ups and downs, and the up again: a personal journey—part 2: aspects of factor VIII manufacture from plasma. Ann Blood 2018; 3: 20. DOI: 10.21037/aob.2018.02.05.
27. Wolf MB. Hemoglobin-Dilution Method: Effect of Measurement Errors on Vascular Volume Estimation. Comput Math Methods Med. 2017; 2017: 3420590. DOI: 10.1155/2017/3420590.
28. Lippi G., Rossi R., Ippolito L., et al. Infl uence of residual platelet count on routine coagulation, factor VIII, and factor IX testing in postfreeze-thaw samples. Semin Thromb Hemost. 2013; 39(7): 834–9. DOI: 10.1055/s-0033-1356572.
29. Gudkov A.G., Leushin V.Y., Sidorov I.A., et al. A Functional Line of Plasma Extractors. Biomed Eng. 2021; 54(1): 350–3. DOI: 10.1007/s10527-021-10037-7.
30. Gudkov A.G., Leushin V.Y., Sidorov I.A., et al. Devices for Sealing Polymer Containers with Blood and Its Components. Biomed Eng. 2021; 54(1): 376–9. DOI: 10.1007/s10527-021-10043-9.
31. Galstyan G.M., Polevodova O.A., Yakovleva E.V., Shchekina A.E. Rotation thromboelastometry for the diagnosis of factor defi ciency and management of the hemostatic therapy in patients with inherited coagulation disorders. Gematologiya I transfusiologiya. 2019; 64(3): 297–316. (In Russian). DOI: 10.35754/0234-5730-2019-64-3-297-316.
32. Vetrova N.A., Lemondzhava V.N., Filyaev A.A., et al. Prediction of Safety Indicators for Donor Blood and Its Components in a Statistically Managed Technological Process Based on Bayesian Inversion. Biomed Eng. 2022; 56(2): 114–8. DOI: 10.1007/s10527-022-10179-2.
33. Pereira P, Seghatchian J, Caldeira B, Xavier S, de Sousa G. Statistical control of the production of blood components by control charts of attribute to improve quality characteristics and to comply with current specifi cations. Transfus Apher Sci. 2018; 57(2): 285–90. DOI: 10.1016/j.transci.2018.04.009.
34. Varlamov O.O., Chuvikov D.A., Lemondzhava V.N., et al. A Software Package Supporting Decision Making on the Safety of Thermolabile Blood Components. Biomed Eng. 2022; 55(1): 355–9. DOI: 10.1007/s10527-022-10135-0.
35. Vickers A.J. How many repeated measures in repeated measures designs? Statistical issues for comparative trials. BMC Med Res Methodol. 2003; 3: 22. DOI: 10.1186/1471-2288-3-22.
36. Sullivan L.M., Weinberg J., Keaney J.F. Common Statistical Pitfalls in Basic Science Research. J Am Heart Assoc. 2016; 5(10): e004142. DOI: 10.1161/JAHA.116.004142.
Review
For citations:
Lemondzhava V.N., Sidorkevich S.V., Kasyanov A.D. Effect of increasing the number of repeated measurements on the accuracy of determining factor VIII activity and fibrinogen concentrations in blood plasma. Russian journal of hematology and transfusiology. 2024;69(1):32-39. (In Russ.) https://doi.org/10.35754/0234-5730-2024-69-1-32-39