Preview

Russian journal of hematology and transfusiology

Advanced search

Laboratory features of hemoglobinopathies

https://doi.org/10.35754/0234-5730-2024-69-1-40-51

Abstract

Introduction. Hemoglobinopathies are a group of diseases caused by aberrations in the HBB gene encoding the beta chain of globin. The range of possible aberrations is diverse and has regional specifi city.

Aim: to determine the laboratory and molecular genetic characteristics of beta-thalassemia and qualitative hemoglobinopathies.

Methods. In total, 268 patients suspected for having some types of the hereditary anemia were included in the study. All patients underwent capillary electrophoresis of hemoglobin using the Minicap Sebia device and the group either with elevated HbA2/HbF fractions or with the presence of pathological Hb variants was selected. The direct automatic Sanger sequencing of the HBB gene was performed in the selected group.

Results. The analyzed group had 33 electrophoresis positive patients out of 268. Some pathological variants of hemoglobin including HbS, Hb Shepherds Bush and an unknown pathological Hb variant were detected. According to the results of genotyping, aberrations in the HBB gene were detected in 24 of 33 patients, of which 21 patients confi rmed the presence of beta-thalassemia, the rest of the detected aberrations were characteristic of various hemoglobinopathies. The most common mutation characteristic of beta-thalassemia was HB:c.25_26delAA, which was detected in 33.3% of cases. The pathogenic effect of an aberration with previously unknown clinical signifi cance has been determined — HBB:c.93-36CT.

Conclusion. Capillary electrophoresis of hemoglobin can be used for beta-thalassemia screening. However, the diagnosis confi rmation is carried out by molecular genetic studies. The detected aberrations spectrum for beta-thalassemia and hemoglobinopathies is extremely diverse and it includes some extremely rare hemoglobinopathy types requiring further investigations.

 
 
 

About the Authors

A. G. Khachaturian
Almazov National Medical Research Centre
Russian Federation

Alina G. Khachaturian, hematology resident 

197341, Saint-Petersburg



V. D. Nazarov
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Vladimir D. Nazarov, Сand. Sci. (Med.), laboratory diagnostics doctor, Autoimmune Disease Laboratory

197022, Saint-Petersburg



S. V. Lapin
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Sergey V. Lapin, Сand. Sci. (Med.), Head of Autoimmune Disease Laboratory

197022, Saint-Petersburg



D. V. Sidorenko
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Darya V. Sidorenko, laboratory diagnostics doctor, Autoimmune Disease Laboratory

197022, Saint-Petersburg



I. A. Dubina
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Irina A. Dubina, laboratory diagnostics doctor, Autoimmune Disease Laboratory

197022, Saint-Petersburg



M. Yu. Pervakova
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Margharita Yu. Pervakova, laboratory diagnostics doctor, Autoimmune Disease Laboratory

197022, Saint-Petersburg



A. A. Vilgelmi
Saint-Petersburg Laboratory Complex LLC “SPC Helix”
Russian Federation

Anton A. Vilgelmi, acting Head

194044, Saint-Petersburg

   


V. L. Emanuel
Centre of Molecular medicine, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Vladimir L. Emanuel, Dr. Sci. (Med.), Vice-President of Russian Medical Laboratory Association, Northwestern District Rosdravnadzor major expert-specialist of clinical laboratory diagnostics, Russian Metrological Academy academician, Head 

197022, Saint-Petersburg



References

1. Lee J.S., Cho S.I., Park S.S., Seong M.W. Molecular basis and diagnosis of thalassemia. Blood Res. 2021;56(S1):S39–43. DOI: 10.5045/br.2021.2020332.

2. https://globin.bx.psu.edu/cgi-bin/hbvar/counter; 2024.

3. Steinberg M.H., Forget B.G., Higgs D.R., editors. Disorders of Hemoglobin. Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press, 2009.

4. Kattamis A., Forni G.L., Aydinok Y., Viprakasit V. Changing patterns in the epidemiology of beta-thalassemia. Eur J Haematol. 2020; 105(6): 692–703. DOI: 10.1111/ejh.13512.

5. Thein S.L. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013; 3(5): a011700. DOI: 10.1101/cshperspect.a011700.

6. http://clinvar.com/; 2024.

7. Hardison R.C., Chui D.H., Giardine B., et al. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum. Mutat. 2002; 19(3): 225–33. DOI: 10.1002/humu.10044.

8. Abdel-Messih I.Y., Youssef S.R., Mokhtar G.M., et al. Clinical to Molecular Screening Paradigm for beta-Thalassemia Carriers. Hemoglobin. 2015; 39(4): 240–6. DOI: 10.3109/03630269.2015.1048808.

9. Suman F.R., Teja R., Magdalene J., et al. Screening for beta Thalassemia Carrier State Among Women Attending Antenatal Clinic in a Tertiary Care Centre and Framing a Model Program for the Prevention of a Beta Thalassemia. Cureus. 2022; 14(2): e22209. DOI: 10.7759/cureus.22209.

10. Nosheen A., Inamullah., Ahmad H., et al. Premarital genetic screening for beta thalassemia carrier status of indexed families using HbA2 electrophoresis. J Pak Med Assoc. 2015; 65(10): 1047–9.

11. Lippi G., Carta M.R., Salvagno G.L., et al. Separation of haemoglobin HbE and HbA by the fully automated, high-pressure liquid chromatography Tosoh HLC723 G7 analyzer. Int J Lab Hematol. 2008; 30(5): 432–6. DOI: 10.1111/j.1751553X.2007.00988.x.

12. Zhilenkova I.I. Laboratory diagnostic features of different types of hemoglobinopathies: PhD Thesis. Saint-Petersburg, 2017. 24 p. (In Russian).

13. Gupta V., Sharma P., Jora R., et al. Screening for Thalassemia Carrier Status in Pregnancy and Pre-Natal Diagnosis. Indian Pediatr. 2015; 52(9): 808–9.

14. Aydogan G., Keskin S., Akici F., et al. Causes of Hypochromic Microcytic Anemia in Children and Evaluation of Laboratory Parameters in the Differentiation. J Pediatr Hematol Oncol. 2019; 41(4): 221–3. DOI: 10.1097/MPH.0000000000001382.

15. Zhuang Q., Wang G., Wang Y., et al. The value of combined detection of HbA2 and HbF for the screening of thalassemia among individuals of childbearing ages. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2022; 39(1): 16–20.

16. Milovanova N.V., Gusarova N.V., Nagornov I.O., et al. The molecular genetic HBB gene analysis in a group of Russian patients. Rossiyskiy Zurnal Detskoy Gematologii I Onkologii. 2019; 6(1): 216. (In Russian).

17. Jalilian M., Azizi Jalilian F., Ahmadi L., et al. The Frequency of HBB Mutations Among β-Thalassemia Patients in Hamadan Province, Iran. Hemoglobin. 2017; 41(1): 61–4. DOI: 10.1080/03630269.2017.1302468.

18. Kountouris P., Kousiappa I., Papasavva T., et al. The molecular spectrum and distribution of haemoglobinopathies in Cyprus: a 20-year retrospective study. Sci Rep. 2016; 6: 26371. DOI: 10.1038/srep26371.

19. Nezhad F.H., Nezhad K.H., Choghakabodi P.M., Keikhaei B. Prevalence and Genetic Analysis of α- and β-Thalassemia and Sickle Cell Anemia in Southwest Iran. J Epidemiol Glob Health. 2018; 8(3–4): 189–95. DOI: 10.2991/j.jegh.2018.04.103.

20. Huang H., Xu L., Chen M., et al. Molecular characterization of thalassemia and hemoglobinopathy in Southeastern China. Sci Rep. 2019; 9(1): 3493. DOI: 10.1038/s41598-019-40089-5.

21. Yang Z., Cui Q., Zhou W., et al. Comparison of gene mutation spectrum of thalassemia in different regions of China and Southeast Asia. Mol Genet Genomic Med. 2019; 7(6): 680. DOI: 10.1002/mgg3.680.

22. https://www.ncbi.nlm.nih.gov/snp/rs33945777#frequency_tab; 2022.

23. White J.M., Brain M.C., Lorkin P.A., et al. Mild «unstable haemoglobin haemolytic anaemia» caused by haemoglobin Shepherds Bush(B74(E18) gly--asp). Nature. 1970; 225(5236): 939–41. DOI: 10.1038/225939a0.

24. Sansone G., Sciarratta G.V., Genova R., et al. Haemoglobin Shepherds Bush (β74 [E18] Gly→Asp) in an Italian Family. Acta Haematol. 1977; 57(2): 102–8. DOI: 10.1159/000207866.

25. May A., Huehns, E.R. The Control of Oxygen Affi nity of Red Cells with HbShepherds Bush. Br J Haematol. 1977; 22(5): 599–607. DOI: 10.1111/j.13652141.1972.tb05706.x.

26. Schilirò G., Musumeci S., Russo A., et al. HB Shepherds Bush (alpha 2 beta 2 74 (E18) Gly replaced by Asp) in two Italian carriers. Hemoglobin. 1981; 5(5): 493–6.

27. https://www.ncbi.nlm.nih.gov/gene/3043; 2024.

28. http://gnomad-sg.org/; 2024.


Review

For citations:


Khachaturian A.G., Nazarov V.D., Lapin S.V., Sidorenko D.V., Dubina I.A., Pervakova M.Yu., Vilgelmi A.A., Emanuel V.L. Laboratory features of hemoglobinopathies. Russian journal of hematology and transfusiology. 2024;69(1):40-51. (In Russ.) https://doi.org/10.35754/0234-5730-2024-69-1-40-51

Views: 1029


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)