Cytological and cytochemical diagnosis of sideroblastic anemia
https://doi.org/10.35754/0234-5730-2024-69-1-80-88
Abstract
Introduction. Disruption of iron utilization by erythrocaryocytes with deposition of hemosiderin granules in the form of a ring is a pathognomonic sign of sideroblastic anemia. An integral part of the diagnosis of this type of anemia is the cytomorphological analysis of bone marrow aspirate with a cytochemical reaction to ring sideroblasts.
Aim — to present current methods of cytological and cytochemical diagnosis of sideroblastic anemia.
Main findings. A pathognomonic sign of sideroblastic anemia is the presence of ring sideroblasts in the bone marrow. Ring sideroblasts are considered to be erythrocaryocytes with granules of intramitochondrial iron located around the nucleus. It is only possible to diagnose ring sideroblasts using special cytochemical diagnostics, but this is carried out only in half of the laboratories that diagnose hematological diseases in the Russian Federation. The algorithm of laboratory diagnostics of sideroblastic anemia in the National Medical Research Center for Hematology is presented.
About the Authors
V. N. DvirnykRussian Federation
Valentina N. Dvirnyk, Cand. Sci. (Med.), Head of the Central Clinical Diagnostic Laboratory
125167, Moscow
A. V. Kohno
Russian Federation
Alina V. Kohno, Cand. Sci. (Med.), Head of department of diagnostics and treatment of hematological diseases
125167, Moscow
A. A. Chulkova
Russian Federation
Anastasia A. Chulkova, Physician, Central Clinical Diagnostic Laboratory
125167, Moscow
I. N. Naumova
Russian Federation
Irina N. Naumova, Leader of the Hematology and General Clinic Group Central Clinical Diagnostic Laboratory
125167, Moscow
O. V. Lazareva
Russian Federation
Olga V. Lazareva, Cand. Sci. (Med.), Head of the department of regional and interdepartmental cooperation in the field of “hematology”
125167, Moscow
E. N. Parovichnikova
Russian Federation
Elena N. Parovichnikova, Dr. Sci. (Med.), CEO
125167, Moscow
References
1. Abu-Zeinah G., DeSancho M.T. Understanding Sideroblastic Anemia: An Overview of Genetics, Epidemiology, Pathophysiology and Current Therapeutic Options. J Blood Med. 2020; 11: 305–18. DOI: 10.2147/JBM.S232644.
2. Juan J.R-S., Xavier C., Leonor A. Causes and Pathophysiology of Acquired Sideroblastic Anemia. Genes (Basel). 2022; 13(9): 1562. DOI: 10.3390/genes13091562.
3. Ducamp S., Fleming M.D. The molecular genetics of sideroblastic anemia. Blood. 2019; 133: 59–69. DOI: 10.1182/blood-2018-08-815951.
4. Patnaik M.M., Tefferi A. Refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis: “2019 Update on Diagnosis, Risk-stratifi cation, and Management”. Am J Hematol. 2019; 94(4): 475–88. DOI: 10.1002/ajh.25397.
5. Willekens C., Dumezy F., Boyer T., et al. Linezolid induces ring sideroblasts. Haematologica. 2013; 98(11): 138–40. DOI: 10.3324/haematol.2013.092395.
6. Colucci G., Silzle T., Solenthaler M. Pyrazinamide-induced sideroblastic anemia. Am J Hematol. 2012; 87(3): 305. DOI: 10.1002/ajh.22125.
7. Minardi M.L., Fato I., Di Gennaro F., et al. Common and Rare Hematological Manifestations and Adverse Drug Events during Treatment of Active TB: A State of Art. Microorganisms. 2021; 9(7): 1477. DOI: 10.3390/microorganisms9071477.
8. Narang N.C., Kotru M., Rao K., Sikka M. Megaloblastic Anemia with Ring Sideroblasts is not Always Myelodysplastic Syndrome. Turk. J. Haematol. 2016; 33: 358–9. DOI: 10.4274/tjh.2016.0090.
9. Berger G., Gerritsen M., Yi G., et al. Ring sideroblasts in AML are associated with adverse risk characteristics and have a distinct gene expression pattern. Blood Adv. 2019; 3: 3111–22. DOI: 10.1182/bloodadvances.2019000518.
10. Boiocchi L., Hasserjian R.P., Pozdnyakova O., et al. Clinicopathological and molecular features of SF3B1-mutated myeloproliferative neoplasms. Hum. Pathol. 2018; 86: 1–11. DOI: 10.1016/j.humpath.2018.11.022.
11. Grüneberg H. The anaemia of fl exed-tailed mice (Mus musculus L.) II Siderocytes. J. Genetics. 1942; 44: 246–72. DOI: 10.1007/BF02982746.
12. Douglas A.S., Dacie J.V. The incidence and signifi cance of iron-containing granules in human erythrocytes and their precursors J. clin. Path. 1953; 6(4): 307– 13. DOI: 10.1136/jcp.6.4.307.
13. Bjorkman S.E. Chronic refractory anemia with sideroblastic bone marrow; a study of four cases. Blood. 1956; 11: 250–259. DOI: 10.1182/blood.V11.3.250.250.
14. Swerdlow S.H., Campo E., Harris N.L, et al. World Health Organization. WHO Classifi cation of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer; Lyon, France: 2017.
15. Malcovati L., Stevenson K., Papaemmanuil E., et al. SF3B1-mutant MDS as a distinct disease subtype: A proposal from the International Working Group for the Prognosis of MDS. Blood. 2020; 136: 157–70. DOI: 10.1182/blood.2020004850.
16. Mufti G.J., Bennett J.M., Goasguen J., et al. Diagnosis and classifi cation of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the defi nition and enumeration of myeloblasts and ring sideroblasts. Haematologica. 2008; 93: 1712–7. DOI: 10.3324/haematol.13405.
17. Malcovati L., Papaemmanuil E., Bowen D.T., et al. Clinical signifi cance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011; 118(24): 6239–46. DOI: 10.1182/blood-2011-09-377275.
18. Khoury J.D., Solary E., Abla O., et al. The 5th edition of the World Health Organization Classifi cation of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36: 1703–19. DOI: 10.1038/s41375-022-01613-1.
19. Broseus J., Florensa L., Zipperer E., et al. Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis. Haematologica. 2012; 97: 1036–41. DOI: 10.3324/haematol.2011.053918.
20. Kurtovic-Kozaric A., Przychodzen B., Singh J.A., et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia. 2015; 29: 126–36. DOI: 10.1038/leu.2014.144.
21. Visconte V., Makishima H., Jankowska A. et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2012; 26: 542–5. DOI: 10.1038/leu.2011.232.
22. Yoshida K., Sanada M., Shiraishi Y., et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011; 478: 64–9. DOI: 10.1038/nature10496.
23. Grinwud N., Ernsho А. Chemistry of the Elements. Translated from English. Moscow: BINOM. Laboratoriya znaniy, 2008. (In Russian).
Review
For citations:
Dvirnyk V.N., Kohno A.V., Chulkova A.A., Naumova I.N., Lazareva O.V., Parovichnikova E.N. Cytological and cytochemical diagnosis of sideroblastic anemia. Russian journal of hematology and transfusiology. 2024;69(1):80-88. (In Russ.) https://doi.org/10.35754/0234-5730-2024-69-1-80-88