Preview

Russian journal of hematology and transfusiology

Advanced search

Determination of FLT3 mutations and minimal residual deasease monitoring in FLT3-positive acute myeloid leukemia

https://doi.org/10.35754/0234-5730-2025-70-1-8-26

Abstract

Introduction. The identification of mutations in the FLT3 gene is essential for the diagnosis, prognosis, and selection of treatment strategies for acute myeloid leukemia (AML).

Aim: to compare the main methods used in the diagnosis of FLT3 mutations in patients with AML.

Materials and methods. Identification of FLT3 gene mutations was carried out using polymerase chain reaction (PCR) with fragment analysis (PCR-FA), double-label PCR-FA, tandem duplication method (TD-PCR), next-generation sequencing (NGS), and allele-specific PCR (AS-PCR) in patients who were diagnosed or observed with AML at the National Medical Research Center for Hematology from 2017 to 01.06.2024.

Results. The PCR-FA method showed reliable results in the testing of internal tandem duplications of FLT3 gene (FLT3-ITD). The double-label PCR-FA method had greater sensitivity and specificity that allowed detection of FLT3-ITD in a larger number of patients. TD-PCR was useful for determining minimal residual disease (MRD) in some patients. NGS provided information about the site of ITD insertion and its nucleotide composition, but also expanded our understanding of point mutations in the first and second tyrosine kinase (TKD1 and TKD2) domains, which may cause resistance to tyrosine kinase inhibitors.

Conclusion. The use of several methods to analyze FLT3 mutations makes it possible to make a more accurate identification of minor FLT3-ITD clones, as well as the detection of MRD and somatic point mutations within the TKD1 and TKD2 domains. Recommendations are given on the molecular genetic diagnosis of FLT3 mutations in AML.

About the Authors

Y. V. Sidorova
National Medical Research Center for Hematology
Russian Federation

Yulia V. Sidorova, Cand. Sci. (Med.), Senior Researcher, Laboratory of Molecular Hematology

125167, Moscow



N. A. Severina
National Medical Research Center for Hematology
Russian Federation

Nataliya A. Severina, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology

125167, Moscow



B. V. Biderman
National Medical Research Center for Hematology
Russian Federation

Bella V. Biderman, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology

125167, Moscow



N. V. Risinskaya
National Medical Research Center for Hematology
Russian Federation

Natalya V. Risinskaya, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology

125167, Moscow



I. S. Fevraleva
National Medical Research Center for Hematology
Russian Federation

Irina S. Fevraleva, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular Hematology

125167, Moscow



M. A. Kostromina
Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University
Russian Federation

Maria A. Kostromina, student

119991, Moscow



S. М. Starodub
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Sofia M. Starodub, 6th year student

119048, Moscow



A. I. Kashlakova
National Medical Research Center for Hematology
Russian Federation

Anastasia I. Kashlakova, Hematologist, Department of Chemotherapy of Hemoblastosis and Hematopoietic Depressions with Bone marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



I. A. Lukyanova
National Medical Research Center for Hematology
Russian Federation

Irina A. Lukianova, Cand. Sci. (Med.), Hematologist, Head of the Department of Chemotherapy of Hemoblastosis and Hematopoietic Depressions with а Day In-patient Facility

125167, Moscow



A. B. Sudarikov
National Medical Research Center for Hematology
Russian Federation

Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Hematology

125167, Moscow



E. N. Parovichnikova
National Medical Research Center for Hematology
Russian Federation

Elena N. Parovichnikova, Dr. Sci. (Med.), CEO

125167, Moscow



References

1. Kazi J.U., Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev. 2019; 99(3): 1433–66. DOI: 10.1152/physrev.00029.2018.

2. Grafone T., Palmisano M., Nicci C., Storti S. An overview on the role of FLT3- tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012; 6: e8. DOI: 10.4081/oncol.2012.e8.

3. Kiyoi H., Naoe T. FLT3 in human hematologic malignancies. Leuk Lymphoma. 2002; 43(8): 1541–7. DOI: 10.1080/1042819021000002866.

4. Drexler HG, Meyer C, Quentmeier H. Effects of FLT3 ligand on proliferation and survival of myeloid leukemia cells. Leuk Lymphoma. 1999; 33(1–2): 83–91. DOI: 10.3109/10428199909093728.

5. Schneider F., Hoster E., Schneider S., et al. Age-dependent frequencies of NPM1 mutations and FLT3-ITD in patients with normal karyotype AML (NK-AML) Ann. Hematol. 2012; 91: 9–18. DOI: 10.1007/s00277-011-1280-6.

6. Papaemmanuil E., Gerstung M., Bullinger L., et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016; 374: 2209–21. DOI: 10.1056/NEJMoa1516192.

7. Ley T.J., Miller C., Ding L., et al. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013; 368: 2059–74. DOI: 10.1056/nejmoa1301689.

8. Kayser S., Schlenk R.F., Londono M.C., et al. German-Austrian AML Study Group (AMLSG). Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009; 114(12): 2386–92. DOI: 10.1182/blood-2009-03-209999.

9. Fröhling S., Schlenk R.F., Breitruck J., et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML Study Group Ulm. Blood. 2002; 100: 4372–80. DOI: 10.1182/blood-2002-05-1440.

10. Gale R.E., Green C., Allen C., et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008; 111: 2776–84. DOI: 10.1182/blood-2007-08-109090.

11. Stone R.M., Mandrekar S.J., Sanford B.L., et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017; 377: 454–64. DOI: 10.1056/NEJMoa1614359.

12. Perl A.E., Martinelli G., Cortes J.E., et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019; 381: 1728–40. DOI: 10.1056/NEJMoa1902688.

13. Badar T., Kantarjian H.M., Nogueras-Gonzalez G.M., et al. Improvement in clinical outcome of FLT3 ITD mutated acute myeloid leukemia patients over the last one and a half decade. Am J Hematol. 2015; 90(11): 1065–70. DOI: 10.1002/ajh.24140.

14. Oñate G., Pratcorona M., Garrido A. et al. Survival improvement of patients with FLT3 mutated acute myeloid leukemia: results from a prospective 9 years cohort. Blood Cancer J. 2023; 13, 69. DOI: 10.1038/s41408-023-00839-1.

15. Daver N., Schlenk R.F., Russell N.H., Levis M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 2019; 33: 299–312. DOI: 10.1038/s41375-018-0357-9.

16. Yamamoto Y., Kiyoi H., Nakano Y., et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001; 97: 2434–9. DOI: 10.1182/blood.V97.8.2434.

17. Bacher U., Haferlach C., Kern W., et al. Prognostic relevance of FLT3-TKD mutations in AML: The combination matters—An analysis of 3082 patients. Blood. 2008; 111: 2527–37. DOI: 10.1182/blood-2007-05-091215.

18. Li S., Li N., Chen Y., et al. FLT3-TKD in the prognosis of patients with acute myeloid leukemia: A meta-analysis. Front Oncol. 2023; 13: 1086846. DOI: 10.3389/fonc.2023.1086846.

19. Eguchi M., Minami Y., Kuzume A., Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines. 2020; 8(8): 245. DOI: 10.3390/biomedicines8080245.

20. Döhner H., Estey E., Grimwade D., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129: 424–47. DOI: 10.1182/blood-2016-08-733196.

21. Sidorova Yu.V., Sorokina T.V., Biderman B.V., et al. The detection of minimal residual disease in patients with chronic B-cell lymphatic leukemia using patientspecified polymerase chain reaction. Klinicheskaya I Laboratornaya Diganostika. 2011; 12: 22–35 (In Russian).

22. Yokota S., Kiyoi H., Nakao M., et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia. 1997; 11(10): 1605–9. DOI: 10.1038/sj.leu.2400812.

23. Brownstein M.J., Carpten J.D., Smith J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996; 20(6): 1004–10. DOI: 10.2144/96206st01.

24. Lin M.T., Tseng L.H., Beierl K., et al. Tandem duplication PCR: an ultrasensitive assay for the detection of internal tandem duplications of the FLT3 gene. Diagn Mol Pathol. 2013; 22(3): 149–55. DOI: 10.1097/PDM.0b013e31828308a1.

25. Lin M.T., Tseng L.H., Dudley J.C., et al. A Novel Tandem Duplication Assay to Detect Minimal Residual Disease in FLT3/ITD AML. Mol Diagn Ther. 2015; 19(6): 409–17. DOI: 10.1007/s40291-015-0170-3.

26. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014; 30: 2114–20. DOI: 10.1093/bioinformatics/btu170.

27. Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.2010; 26: 589–95. DOI: 10.1093/bioinformatics/btp698.

28. Li H., Handsaker B., Wysoker A., et al. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25: 2078–9. DOI: 10.1093/bioinformatics/btp352.

29. Lai Z., Markovets A., Ahdesmaki M., et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016; 44: e108. DOI: 10.1093/nar/gkw227.

30. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38: e164. DOI: 10.1093/nar/gkq603.

31. Clinical recommendations No. 131 “Acute myeloid leukemias”. URL: https://cr.minzdrav.gov.ru/schema/131_1 (in Russian).

32. Bergeron J., Capo-Chichi J.M., Tsui H., et al. The Clinical Utility of FLT3 Mutation Testing in Acute Leukemia: A Canadian Consensus. Curr Oncol. 2023; 30(12): 10410–36. DOI: 10.3390/curroncol30120759.

33. Cortes J.E., Tallman M.S., Schiller G.J., et al. Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood. 2018; 132(6): 598–607. DOI: 10.1182/blood-2018-01-821629.

34. Larson R.A., Mandrekar S.J., Huebner L.J., et al. Midostaurin reduces relapse in FLT3-mutant acute myeloid leukemia: the Alliance CALGB 10603/RATIFY trial. Leukemia. 2021; 35(9): 2539–51. DOI: 10.1038/s41375-021-01179-4.

35. Döhner H., Weber D., Krzykalla J., et al. Midostaurin plus intensive chemotherapy for younger and older patients with AML and FLT3 internal tandem duplications. Blood Adv. 2022; 6: 5345–55. DOI: 10.1182/bloodadvances.2022007223.

36. Jahn N., Jahn E., Saadati M., et al. Genomic landscape of patients with FLT3- mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial. Leukemia. 2022; 36(9): 2218–27. DOI: 10.1038/s41375-022-01650-w.

37. Döhner H., Wei A.H., Appelbaum F.R., et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022; 140: 1345–77. DOI: 10.1182/blood.2022016867.

38. Ho A.D., Schetelig J., Bochtler T., et al. Allogeneic Stem Cell Transplantation Improves Survival in Patients with Acute Myeloid Leukemia Characterized by a High Allelic Ratio of Mutant FLT3-ITD. Biol. Blood Marrow Transplant. 2016; 22: 462–9. DOI: 10.1016/j.bbmt.2015.10.023.

39. Oran B., Cortes J., Beitinjaneh A., et al. Allogeneic Transplantation in First Remission Improves Outcomes Irrespective of FLT3-ITD Allelic Ratio in FLT3-ITDPositive Acute Myelogenous Leukemia. Biol Blood Marrow Transplant. 2016; 22(7): 1218–26. DOI: 10.1016/j.bbmt.2016.03.027

40. Sakaguchi M., Yamaguchi H., Najima Y., et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018; 2(20): 2744–54. DOI: 10.1182/bloodadvances.2018020305.

41. Brunet S., Labopin M., Esteve J., et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012; 30(7): 735–41. DOI: 10.1200/JCO.2011.36.9868.

42. Sakaguchi M., Nakajima N., Yamaguchi H, et al. The sensitivity of the FLT3-ITD detection method is an important consideration when diagnosing acute myeloid leukemia. Leuk Res Rep. 2020; 13: 100198. DOI: 10.1016/j.lrr.2020.100198.

43. Pollyea D.A., Bixby D., Perl A., et al. NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021. J Natl Compr Canc Netw. 2021; 19(1): 16–27. DOI: 10.6004/jnccn.2021.0002.

44. Murphy K.M., Levis M., Hafez M.J., et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003; 5(2): 96–102. DOI: 10.1016/S1525-1578(10)60458-8.

45. Maslyukova I.E., Kurochkin D.V., Martynova E.V., et al. Comparison of fragment analysis and PCR electrophoresis methods for the detection of FLT3-ITD mutations in patients with acute myeloid leukemia. Onkogematologiya. 2022; 17(4): 118–25 (In Russian). DOI: 10.17650/1818-8346-2022-17-4-118-125.

46. Beierl K., Tseng L.H., Beierl R., et al. Detection of minor clones with internal tandem duplication mutations of FLT3 gene in acute myeloid leukemia using delta-PCR. Diagn Mol Pathol. 2013; 22(1): 1–9. DOI: 10.1097/PDM.0b013e31825d81f4.

47. Meshinchi S., Stirewalt D.L., Alonzo T.A., et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood. 2008; 111(10): 4930–3. DOI: 10.1182/blood-2008-01-117770.

48. Abou Dalle I., Ghorab A., Patel K., et al. Impact of numerical variation, allele burden, mutation length and cooccurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer J. 2020; 10(5): 48. DOI: 10.1038/s41408-020-0318-1 48.

49. Cloos J., Goemans B.F., Hess, C.J., et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006; 20: 1217–20. DOI: 10.1038/sj.leu.2404246.

50. McCormick S.R., McCormick M.J., Grutkoski P.S., et al. FLT3 mutations at diagnosis and relapse in acute myeloid leukemia: Cytogenetic and pathologic correlations, including cuplike blast morphology. Arch. Pathol. Lab. Med. 2010; 134: 1143–51. DOI: 10.5858/2009-0292-OA.1.

51. Heuser M., Freeman S.D., Ossenkoppele G.J., et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021; 138: 2753–67. DOI: 10.1182/blood.2021013626.

52. Grob T., Sanders M.A., Vonk C.M., et al. Prognostic Value of FLT3-Internal Tandem Duplication Residual Disease in Acute Myeloid Leukemia. J. Clin. Oncol. 2023; 41: 756–65. DOI: 10.1200/JCO.22.00715.

53. Loo S., Dillon R., Ivey A., et al. Pretransplant FLT3-ITD MRD assessed by highsensitivity PCR-NGS determines posttransplant clinical outcome. Blood. 2022; 140: 2407–11. DOI: 10.1182/blood.2022016567.

54. Othman J., Potter N., Mokretar K., et al. FLT3 inhibitors as MRD-guided salvage treatment for molecular failure in FLT3 mutated AML. Leukemia. 2023; 37: 2066–72. DOI: 10.1038/s41375-023-01994-x.

55. Blätte T.J., Schmalbrock L.K., Skambraks S., et al. getITD for FLT3-ITD-based MRD monitoring in AML. Leukemia. 2019; 33(10): 2535–9. DOI: 10.1038/s41375-019-0483-z.

56. Bibault J.E., Figeac M., Hélevaut N., et al. Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia. Oncotarget. 2015; 6(26): 22812–21. DOI: 10.18632/oncotarget.4333.

57. Lee S., Sun CH., Jang H., et al. ITDetect: a method to detect internal tandem duplication of FMS-like tyrosine kinase (FLT3) from next-generation sequencing data with high sensitivity and clinical application. BMC Bioinformatics. 2023; 24: 62. DOI: 10.1186/s12859-023-05173-8.

58. Spencer D.H., Abel H.J., Lockwood C.M., et al. Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn. 2013; 15(1): 81–93. DOI: 10.1016/j.jmoldx.2012.08.001.

59. Tung J.K., Suarez C.J., Chiang T., et al. Accurate Detection and Quantification of FLT3 Internal Tandem Duplications in Clinical Hybrid Capture Next-Generation Sequencing Data. J Mol Diagn. 2021; 23(10): 1404–13. DOI: 10.1016/j.jmoldx.2021.07.012.

60. Stirewalt D.L., Kopecky K.J., Meshinchi S.P., et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006; 107: 3724–6. DOI: 10.1182/blood-2005-08-3453.

61. Chen F., Sun J., Yin, C., et al. Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation. Bone Marrow Transplant. 2020; 55: 740–8. DOI: 10.1038/s41409-019-0721-z.

62. Ponziani V., Gianfaldoni G., Mannelli F., et al. The size of duplication does not add to the prognostic significance of FLT3 internal tandem duplication in acute myeloid leukemia patients. Leukemia. 2006; 20: 2074–6. DOI: 10.1038/sj.leu.2404368.

63. Schlenk R.F., Kayser S., Bullinger L., et al. German-Austrian AML Study Group. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014; 124(23): 3441–9. DOI: 10.1182/blood-2014-05-578070.

64. Schnittger S., Bacher U., Haferlach C., et al. Diversity of the juxtamembrane and TKD1 mutations (exons 13–15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data. Genes Chromosomes Cancer. 2012; 51(10): 910–24. DOI: 10.1002/gcc.21975.

65. Rücker F.G., Du L., Luck T.J., et al. Molecular landscape and prognostic impact of FLT3-ITD insertion site in acute myeloid leukemia: RATIFY study results. Leukemia. 2022; 36: 90–9. DOI: 10.1038/s41375-021-01323-0.

66. Blau O., Berenstein R., Sindram, A., Blau, I.W. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk. Lymphoma. 2013; 54: 145–52. DOI: 10.3109/10428194.2012.704999.

67. Kiyoi H., Kawashima N., Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020; 111(2): 312–22. DOI: 10.1111/cas.14274.

68. Smith C.C., Paguirigan A., Jeschke G.R., et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood. 2017; 130: 48–58. DOI: 10.1182/blood-2016-04-711820.

69. Scholl S., Fleischmann M., Schnetzke U., Heidel F.H. Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments. Cells. 2020; 9(11): 2493. DOI: 10.3390/cells9112493.

70. Lee, L.Y., Hernandez D., Rajkhowa T., et al. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood. 2017; 129: 257–60. DOI: 10.1182/blood-2016-10-745133.

71. Galanis A., Ma H., Rajkhowa T., et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014; 123(1): 94- 100. DOI: 10.1182/blood-2013-10-529313.

72. Williams A.B., Nguyen B.; Li L., et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia. 2012; 27: 48–55. DOI: 10.1038/leu.2012.191.

73. Staudt D., Murray H.C., McLachlan T., et al. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int J Mol Sci. 2018; 19(10): 3198. DOI: 10.3390/ijms19103198.

74. Roloff G.W., Wen F., Ramsland A., et al. Clinical and molecular response of acute myeloid leukemia harboring non-canonical FLT3 N676K driver mutations to contemporary FLT3 inhibitors. Haematologica. 2023; 108(8): 2234–9. DOI: 10.3324/haematol.2022.282148.


Review

For citations:


Sidorova Y.V., Severina N.A., Biderman B.V., Risinskaya N.V., Fevraleva I.S., Kostromina M.A., Starodub S.М., Kashlakova A.I., Lukyanova I.A., Sudarikov A.B., Parovichnikova E.N. Determination of FLT3 mutations and minimal residual deasease monitoring in FLT3-positive acute myeloid leukemia. Russian journal of hematology and transfusiology. 2025;70(1):8-26. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-1-8-26

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)