Acute myeloid leukemias and myelodysplastic syndromes associated with previous cytotoxic therapy. Characteristic features, prognosis, and treatment approaches
https://doi.org/10.35754/0234-5730-2025-70-1-97-113
Abstract
Introduction. Over the past decades, a number of classifications and their updates have been developed for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Myeloid neoplasms (MN) after previous therapy for other diseases had different designations. The fifth edition of the WHO classification provides the most accurate definition of these neoplasmes — MN post cytotoxic therapy (MN-pCT). The problem of choosing therapy for these MN is largely related to previous treatment of the first oncological disease.
Aim: to present the difficulties of classifying MN induced by previous cytotoxic chemotherapy of a hematologic malignancy and a solid tumor, as well as the difficulties of determining the prognosis and choosing a treatment method.
Main findings. Clinical cases of MDS after chemotherapy of AML and AML after anticancer treatment of osteosarcoma are described. The anamnesis, diagnostics procedures are reported in detail, and the choice of therapy is justified. Risk stratification of patients with MN associated with previous cytotoxic therapy is discussed.
Keywords
About the Authors
T. T. ValievRussian Federation
Timur T. Valiev, Dr. Sci. (Med.), Head of the Department of Pediatric Oncology and Hematology (Chemotherapy of Hemoblastosis) No1
115478, Moscow
A. D. Shirin
Russian Federation
Anton D. Shirin, Cand. Sci. (Med.), hematologist, Medical Adviser
127410, Moscow
A. V. Kokhno
Russian Federation
Alina V. Kokhno, Cand. Sci. (Med.), Head of the Department of Diagnostics and Treatment of Hematological Diseases
125167, Moscow
A. S. Antipova
Russian Federation
Alina S. Antipova, Cand. Sci. (Med.), Oncologist of Department of Antitumor Drug Therapy and Hematology, Department of Hematology and Bone Marrow Transplantation
115478, Moscow
O. Yu. Baranova
Russian Federation
Olga Yu. Baranova, Cand. Sci. (Med.), Senior Researcher of Department of Antitumor Drug Therapy and Hematology, Department of Hematology and Bone Marrow Transplantation
115478, Moscow
M. A. Frenkel
Russian Federation
Marina A. Frenkel, Dr. Sci. (Med.), Leading Scientifi c Employee of Haematopoiesis Immunology Laboratory
115478, Moscow
A. D. Palladina
Russian Federation
Alexandra D. Palladina, Cand. Sci. (Med.), Clinical Laboratory Diagnostics Doctor of Laboratory of Clinical Immunology and Innovative Technologies, Consultative and Diagnostic Center
115478, Moscow
M. A. Senchenko
Russian Federation
Maria A. Senchenko, Cand. Sci. (Med.), Pathologist of Pathological Anatomy Department, Consultative and Diagnostic Center
115478, Moscow
References
1. Bennett J.M., Catovsky D., Daniel M.T., et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982; 51(2): 189–99. DOI: 10.1111/j.1365-2141.1982.tb02771.x.
2. Jaffe E.S., Harris N.L., Stein H., et al. WHO Classification of Tumors. Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.
3. Vardiman J.W., Harris N.L., Brunning R.D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 100(7): 2292– 302. DOI: 10.1182/blood-2002-04-1199.
4. Michels S.D., McKenna R.W., Arthur D.C., et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood. 1985; 65(6): 1364–72.
5. Swerdlow S.H., Campo E., Harris N.L., et al. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
6. Khoury J.D., Solary E., Abla O., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic Dendritic Neoplasms. Leukemia. 2022; 36(7): 1703–19. DOI: 10.1038/s41375-022-01613-1.
7. Asaulenko Z.P., Spiridonov I.N., Baram D.V., Krivolapov Yu.A. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 2022 (5th edition): Myeloid and Histiocytic Tumors. Arkhiv patologii. 2023; 85(5): 36–44 (In Russian). DOI: 10.17116/patol20238505136.
8. Schratz K.E., DeZern A.E. Genetic predisposition to myelodysplastic syndrome in clinical practice. Hematol Oncol Clin North Am. 2020; 34(2): 333–56. DOI: 10.1016/j.hoc.2019.10.002.
9. ATC/DDD Index 2025. www.fhi.no; 2025: https://atcddd.fhi.no/atc_ddd_index/
10. Sun L., Babushok D.V. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood. 2020; 136(1): 36–49. DOI: 10.1182/blood.2019000940.
11. Haase D., Hanf V., Thomas S. Therapy-related hematologic neoplasias after breast cancer. Epidemiologic, etiologic and cytogenetic aspects and new risk factors according to published data and own results. Med Klin. 2004; 99(9): 506– 17. DOI: 10.1007/s00063-004-1077-7.
12. Inskip P.D., Curtis R.E. New malignancies following childhood cancer in the United States, 1973–2002. Int J Cancer. 2007; 121(10): 2233–40. DOI: 10.1002/ijc.22827.
13. McNerney M.E., Godley L.A., Le Beau M.M. Therapy related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017; 17(9): 513–27. DOI: 10.1038/nrc.2017.60.
14. Domracheva E.V., Aseeva E.A., Neverova A.L., et al. Leukemias and myelodysplastic syndromes developed after treatment of neoplasms: The results of 16 year’s experience. Klinicheskaya onkogematologiya. 2011; 4(2): 120–34 (In Russian).
15. Kokhno A.V., Parovichnikova E.N., Savchenko V.G. Myelodysplastic syndrome. Klinicheskaya gerontologiya. 2009; 3: 33–46 (In Russian).
16. Leone G., Mele L., Pulsoni A., et al. The incidence of secondary leukemias. Haematologica. 1999; 84(10): 937–45.
17. Bhatia S. Therapy related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013; 40(6): 666–75. DOI: 10.1053/j.seminoncol.2013.09.013.
18. Advani P.G., Schonfeld S.J. Risk of therapy related myelodysplasticsyndrome/acute myeloid leukemia after childhood cancer: a population based study. Leukemia. 2019; 33(12): 2947–78. DOI: 10.1038/s41375 019 0520 y.
19. Guenova M., Balatzenko G., Mihaylov G. Therapy-Related Acute Myeloid Leukemias. In Guenova M., Balatzenko G., eds. Leukemia. London: IntechOpen; 2013. 254 p.
20. Locke F.L., Ghobadi A., Jacobson C.A., et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019; 20(1): 31–42. DOI: 10.1016/S1470-2045(18)30864-7.
21. Falini L., Venanzi A., Tini V., et al. Acute myeloid leukemia development soon after anti-CD19 chimeric antigen receptor T-cell infusion in a patient with refractory diffuse large B-cell lymphoma and pre-existing clonal hematopoiesis. Haematologica. 2022; 108(1): 290–94. DOI: 10.3324/haematol.2022.281351.
22. Zhao A., Zhao M., Qian W., et al. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: Case series and review of literature. Front Immunol. 2023; 13: 1063986. DOI: 10.3389/fimmu.2022.
23. Accorsi Buttini E., Farina M., Lorenzi L., et al. High risk myelodysplastic syndrome following CAR T-cell therapy in a patient with relapsed diffuse large B cell lymphoma: A case report and literature review. Front. Oncol. 2023; 13: 1036455. DOI: 10.3389/fonc.2023.1036455.
24. FDA Reports of Secondary Malignancies Following Chimeric Antigen Receptor (CAR) T Cell Therapies and Relative Risk: an EBMT-EHA-GoCART Coalition Statement. www.ebmt.org. 2023: https://www.ebmt.org/ebmt/news/fda-reports-secondary-malignancies-following-chimeric-antigen-receptor-car-t-cell
25. Heslop H.E. Data mining for second malignancies after CAR-T. Blood. 2024; 143(20): 2023–24. DOI: 10.1182/blood.2024024446.
26. Singh Z.N., Huo D., Anastasi J., et al. Therapy-related myelodysplastic syndrome: morphologic subclassification may not be clinically relevant. Am J Clin Pathol. 2007; 127(2): 197–205. DOI: 10.1309/NQ3PMV4U8YV39JWJ.
27. Mauritzson N., Albin M., Rylander L., et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001. Leukemia. 2002; 16(12): 2366–78. DOI: 10.1038/sj.leu.2402713.
28. Fianchi L., Pagano L., Piciocchi A., et al. Characteristics and outcome of therapy-related myeloid neoplasms: Report from the Italian network on secondary leukemias. Am J Hematol. 2015; 90(5): E80–5. DOI: 10.1002/ajh.23966.
29. Makhacheva F.A., Valiev T.T. Clinical features of secondary acute myeloid leukemia in children. Onkogematologiya. 2020; 15(4): 12–7 (In Russian). DOI: 10.17650/1818-8346-2020-15-4-12-17.
30. Kayser S., Döhner K., Krauter J., et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011; 117(7): 2137–45. DOI: 10.1182/blood-2010-08-301713.
31. Samra B., Richard-Carpentier G., Kadia T.M., et al. Characteristics and outcomes of patients with therapy-related acute myeloid leukemia with normal karyotype. Blood Cancer J. 2020; 10(5): 47. DOI: 10.1038/s41408-020-0316-3.
32. Schoch C., Kern W., Schnittger S., et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004; 18(1): 120–5. DOI: 10.1038/sj.leu.2403187.
33. Greenberg P., Cox C., LeBeau M.M., et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997; 89(6): 2079– 88. DOI: 10.1182/blood.V89.6.2079.
34. Greenberg P.L., Tuechler H., Schanz J., et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012; 120(12): 2454–65. DOI: 10.1182/blood-2012-03-420489.
35. Malcovati L., Germing U., Kuendgen A., et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007; 25(23): 3503–10. DOI: 10.1200/JCO.2006.08.5696.
36. Kantarjian H., O’Brien S., Ravandi F., et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008; 113(6): 1351–61. DOI: 10.1002/cncr.23697.
37. Smith S.M., Le Beau M.M., Huo D., et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003; 102(1): 43–52. DOI: 10.1182/blood-2002-11-3343.
38. Kim S.A., Hong J., Park W.C., et al. Better treatment outcomes in patients with actively treated therapy-related myeloid neoplasms harboring a normal karyotype. PLoS ONE. 2018; 13(12): e0209800. DOI: 10.1371/journal.pone.0209800.
39. Borate U., Norris B.A., Statler A., et al. Representation of therapy-related myelodysplastic syndrome in clinicaltrials over the past 20 years. Blood Adv. 2019; 3(18): 2738–47. DOI: 10.1182/bloodadvances.2019000293.
40. Kuendgen A., Nomdedeu M., Tuechler H. et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification—an approach to classification of patients with t-MDS. Leukemia. 2021; 35(3): 835–49. DOI: 10.1038/s41375-020-0917-7.
41. Oken M.M., Creech R.H., Tormey D.C., et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982; 5(6): 649–55.
42. Quintás-Cardama A., Daver N., Kim H., et al. A prognostic model of therapyrelated myelodysplastic syndrome for predicting survival and transformation to acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2014; 14(5): 401–10. DOI: 10.1016/j.clml.2014.03.001.
43. Zhao Y., Chen W., Yu J. et al. TP53 in MDS and AML: Biological and clinical advances. Cancer Lett. 2024; 588: 216767. DOI: 10.1016/j.canlet.2024.216767.
44. Bacher U., Haferlach C., Alpermann T., et al. Patients with therapy-related myelodysplastic syndromes and acute myeloid leukemia share genetic features but can be separated by blast counts and cytogenetic risk profiles into prognostically relevant subgroups. Leuk Lymphoma. 2013; 54(3): 639–42. DOI: 10.3109/10428194.2012.717275.
45. Zhang L., Wang S.A. A focused review of hematopoietic neoplasms occurring in the therapy-related setting. Int J Clin Exp Pathol. 2014; 7(7): 3512–23.
46. Kern W., Haferlach T., Schnittger S., et al. Prognosis in therapy-related acute myeloid leukemia and impact of karyotype. J Clin Oncol. 2004; 22(12): 2510–11. DOI: 10.1200/JCO.2004.99.301.
47. Ornstein M.C., Mukherjee S., Mohan S., et al. Predictive factors for latency period and a prognostic model for survival in patients with therapy-related acute myeloid leukemia. Am J Hematol. 2014; 89(2): 168–73. DOI: 10.1002/ajh.23605.
48. Ravi B., Deeg H.J. Treatment-related myelodysplastic syndrome: molecular characteristics and therapy. Curr Opin Hematol. 2011; 18(2): 77–82. DOI: 10.1097/MOH.0b013e328343997a.
49. Chang C., Storer B.E., Scott B.L., et al. Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood. 2007; 110(4): 1379–87. DOI: 10.1182/blood-2007-02-076307.
50. Litzow M.R., Tarima S., Perez W.S. et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010; 115(9): 1850–57. DOI: 10.1182/blood-2009-10-249128.
51. Kröger N., Brand R., van Biezen A., et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica. 2009; 94(4): 542–49. DOI: 10.3324/haematol.2008.000927.
52. Ostgård L.S., Kjeldsen E., Holm M.S., et al. Reasons for treating secondary AML as de novo AML. Eur J Haematol. 2010; 85(3): 217–26. DOI: 10.1111/j.1600-0609.2010.01464.x.
53. Visani G., Tosi P., Zinzani P.L., et al. FLAG (fludarabine + high-dose cytarabine + G-CSF): an effective and tolerable protocol for the treatment of ‘poor risk’ acute myeloid leukemias. Leukemia. 1994; 8(11): 1842–46.
54. Burnett A.K., Russell N.H., Hills R.K., et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013; 31(27): 3360–68. DOI: 10.1200/JCO.2012.47.4874.
55. DiNardo C.D., Pratz K., Pullarkat V., et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019; 133: 7–17. DOI: 10.1182/blood-2018-08-868752.
56. DiNardo C.D., Jonas B.A., Pullarkat V., et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N Engl J Med. 2020; 383: 617– 29. DOI: 10.1056/NEJMoa2012971.
57. Strickland S.A., Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022; 171: 103607. DOI: 10.1016/j.critrevonc.2022.103607.
58. Lancet J.E., Uy G.L., Cortes J.E., et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. 2018; 36(26): 2684–92. DOI: 10.1200/JCO.2017.77.6112.
59. Döhner H., Estey E., Grimwade D., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129(4): 424–47. DOI: 10.1182/blood-2016-08-733196.
60. Burnett A.K., Russell N.H., Hills R.K., et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015; 125(25): 3878–85. DOI: 10.1182/blood-2015-01-623447.
61. Mayer R.J., Davis R.B., Schiffer C.A., et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med. 1994; 331(14): 896–903. DOI: 10.1056/NEJM199410063311402.
62. Karanes C., Kopecky K.J., Head D.R., et al. A phase III comparison of high dose ARA-C (HIDAC) versus HIDAC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leuk Res. 1999; 23: 787–94. DOI: 10.1016/s0145-2126(99)00087-9.
63. Garcia-Manero G., Shan J., Faderl S., et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2007; 22(3): 538–43. DOI: 10.1038/sj.leu.2405070.
64. Cheson B.D., Greenberg P.L., Bennett J.M., et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006; 108(2): 419–25. DOI: 10.1182/blood-2005-10-4149.
65. Bernard E., Tuechler H., Greenberg P.L., et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 2022; 1(7): EVIDoa2200008. DOI: 10.1056/evidoa2200008.
66. Study Of Venetoclax Tablet With Intravenous or Subcutaneous Azacitidine to Assess Change in Disease Activity In Adult Participants With Newly Diagnosed Higher-Risk Myelodysplastic Syndrome (Verona). www.clinicaltrials.gov; 2024. https://clinicaltrials.gov/study/NCT04401748?term=NCT04401748&rank=1
67. Jädersten M., Saft L., Pellagatti A., et al. Clonal heterogeneity in the 5q- syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica. 2009; 94(12): 1762–66. DOI: 10.3324/haematol.2009.011528.
68. Bennett J.M., Catovsky D., Daniel M.T., et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985; 103(3): 460–2. DOI: 10.7326/0003-4819-103-3-460.
69. Creutzig U., Zimmermann M., Bourquin J.P., et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013; 122(1): 37–43. DOI: 10.1182/blood-2013-02-484097.
70. Guolo F., Minetto P., Clavio M., et al. High feasibility and antileukemic efficacy of fludarabine, cytarabine, and idarubicin (FLAI) induction followed by riskoriented consolidation: A critical review of a 10-year, single-center experience in younger, non M3 AML patients. Am J Hematol. 2016; 91(8): 755–62. DOI: 10.1002/ajh.24391.
Review
For citations:
Valiev T.T., Shirin A.D., Kokhno A.V., Antipova A.S., Baranova O.Yu., Frenkel M.A., Palladina A.D., Senchenko M.A. Acute myeloid leukemias and myelodysplastic syndromes associated with previous cytotoxic therapy. Characteristic features, prognosis, and treatment approaches. Russian journal of hematology and transfusiology. 2025;70(1):97-113. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-1-97-113