Preview

Russian journal of hematology and transfusiology

Advanced search

TP53 gene mutations and cytogenetic aberrations in tumor cells of patients with primary mediastinal B-cell large cell lymphoma

https://doi.org/10.35754/0234-5730-2025-70-1-27-39

Abstract

Introduction. TP53 gene mutations and cytogenetic abnormalities (MYC/8q24, BCL2/18q21, BCL6/3q27, del17p13, and complex karyotype) play an important role in prognosis and therapy selection for various lymphoproliferative diseases. However, their signifi cance in the pathogenesis and prognosis of primary mediastinal B-cell large cell lymphoma (PMBCL) remains poorly understood and warrants further investigation.

Aim: to assess the frequency of TP53 gene mutations and cytogenetic aberrations (MYC/8q24, BCL2/18q21, BCL6/3q27, del17p13, and complex karyotype) and their impact on treatment outcomes in PMBCL.

Materials and methods. The study included 51 patients who underwent therapy using the response-adapted DA-EPOCHR protocol from 2012 to 2024. Analysis of TP53 mutations (exons 4–10) was performed using high-throughput sequencing (n = 31/51 (61 %)). FISH analysis was conducted to identify chromosomal abnormalities involving the loci of MYC/8q24, BCL2/18q21, BCL6/3q27, and del17p13 (n = 31/51 (61 %)), and standard karyotyping was carried out (n = 31/51 (61 %)). Due to the low mitotic activity of tumor cells, suffi cient mitoses were obtained in only 16/31 (52%) PMBCL samples.

Results. TP53 mutations were identifi ed in 4/31 (13%) patients, with three of these mutations classifi ed as pathogenic. Isolated translocations involving MYC/8q24 and BCL6/3q27 loci were detected in 2/31 (6 %) patients. Structural rearrangements of chromosome 17 in the TP53 locus and translocations involving the BCL2/18q21 locus were not identifi ed in any case. At 36 months, overall survival in the TP53-WT and TP53-MUT groups was 85 % and 100 %, respectively (p = 0.61). The relapse/progression rate was 33 % in TP53-MUT patients and 20 % in TP53-WT patients (p = 0.35).

Conclusion. The fi ndings demonstrate the rarity and lack of prognostic signifi cance of the investigated markers in PMBCL patients. These results underscore the need for further research to identify driver events in biologically discrete subtypes of aggressive B-cell lymphomas, as well as risk factors specifi c to each subtype. Such research will provide a foundation for the development of precision therapy approaches.

About the Authors

Y. K. Mangasarova
National Medical Research Center for Hematology
Russian Federation

Yiana K. Mangasarova, Cand. Sci. (Med.), head of the Department of Chemotherapy of Lymphatic tumors with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



B. V. Biderman
National Medical Research Center for Hematology
Russian Federation

Bella V. Biderman, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology

125167, Moscow



T. N. Obukhova
National Medical Research Center for Hematology
Russian Federation

Tatiana N. Obukhova, Cand. Sci. (Med.), Head of the Karyology Laboratory

125167, Moscow



R. R. Abdurashidova
National Medical Research Center for Hematology
Russian Federation

Runiza R. Abdurashidova, hematologist of the Department of Lymphatic Tumors with Hematopoietic stem cell transplantation unit and day hospital

125167, Moscow



T. V. Abramova
National Medical Research Center for Hematology
Russian Federation

Tatyana V. Abramova, Cand. Sci. (Med.), Research associate Laboratory of Genetic Engineering

125167, Moscow



A. U. Magomedova
National Medical Research Center for Hematology
Russian Federation

Aminat U. Magomedova, Dr. Sci. (Med.), Leading Researcher of the Department of Lymphatic Tumors with a hematopoietic stem cell transplantation unit and a day hospital

125167, Moscow



Yu. A. Chabaeva
National Medical Research Center for Hematology
Russian Federation

Yuliya A. Chabaeva, Cand. Sci. (Tech.), deputy Head of the information and analytical Department

125167, Moscow



N. G. Gabeeva
National Medical Research Center for Hematology
Russian Federation

Nelli G. Gabeeva, Cand. Sci. (Med.), hematologist of the Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



E. E. Zvonkov
National Medical Research Center for Hematology
Russian Federation

Evgeny E. Zvonkov, Dr. Sci. (Med.), Head of the Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



А. B. Sudarikov
National Medical Research Center for Hematology
Russian Federation

Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of Molecular Genetic Lab

125167, Moscow



References

1. Blagih J., Buck M. D., Vousden K. H. p53, cancer and the immune response. Journal of Cell Science. 2020; 133(5): jcs237453. DOI: 10.1242/jcs.237453.

2. Chasov V., Mirgayazova R., Zmievskaya E., et al. Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Front. Oncol. 2020; 10: 1460. DOI: 10.3389/fonc.2020.01460.

3. Döhner H., Stilgenbauer S., Benner A., et al. Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N Engl J Med. 2000; 343(26): 1910–6. DOI: 10.1056/NEJM200012283432602.

4. Campo E., Cymbalista F., Ghia P., et al. TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018; 103(12): 1956–68. DOI: 10.3324/haematol.2018.187583.

5. Pospisilova S., Sutton L.A., Malcikova J., et al. Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go? Haematologica. 2016. 101(3): 263–5. DOI: 10.3324/haematol.2015.139246.

6. Eskelund C.W., Dahl C., Hansen J. W., et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefi t from intensive chemoimmunotherapy. Blood. 2017; 130(17): 1903–10. DOI: 10.1182/blood-2017-04-779736.

7. Xu-Monette Z.Y., Wu L., Visco C., et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012; 120(19): 3986–96. DOI: 10.1182/blood-2012-05-433334.

8. Schiefer A.-I., Kornauth C., Simonitsch-Klupp I., et al. Impact of Single or Combined Genomic Alterations of TP53, MYC, and BCL2 on Survival of Patients With Diffuse Large B-Cell Lymphomas: A Retrospective Cohort Study. Medicine. 2015; 94(52): e2388. DOI: 10.1097/MD.0000000000002388.

9. Zenz T., Kreuz M., Fuge et al. TP53 mutation and survival in aggressive B cell lymphoma. Intl Journal of Cancer. 2017; 141(7): 1381–8. DOI: 10.1002/ijc.30838.

10. Porpaczy E., Wohlfarth P., Königsbrügge O., et al. Influence of TP53 Mutation on Survival of Diffuse Large B-Cell Lymphoma in the CAR T-Cell Era. Cancers. 2021; 13(22): 5592. DOI: 10.3390/cancers13225592.

11. Misyurina A.E., Kravchenko S.K., Misyurin V.A., et al. TP53 Gene Mutations in Tumor Cells of Patients with Aggressive B-Cell Lymphomas. Klinicheskaya Onkogematologiya 2019; 12(3): 263–70 (In Russian). DOI: 10.21320/2500-2139-2019-12-3-263-270.

12. Clipson A., Barrans S., Zeng N., et al. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit. J Pathol Clin Res. 2015; 1(3): 125–33. DOI: 10.1002/cjp2.10.

13. Mangasarova Ya.K., Abdurashidova R.R., Magomedova A.U., et al. Response-Adapted Strategy in the Treatment of Primary Mediastinal Large B-Cell Lymphoma: Results of a Prospective Single-Center Clinical Trial. Klinicheskaya Onkogematologiya. 2024; 17(4): 335–46 (In Russian). DOI: 10.21320/2500-2139-2024-17-4-335-346.

14. Twa D.D.W., Steidl C. Structural genomic alterations in primary mediastinal large B-cell lymphoma. Leuk Lymph. 2015; 56(8): 2239–50. DOI: 10.3109/10428194.2014.985673.

15. Steidl C., Gascoyne R.D. The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood. 2011; 118(10): 2659–69. DOI: 10.1182/blood-2011-05-326538.

16. Dunleavy K. Primary mediastinal B-cell lymphoma: biology and evolving therapeutic strategies. Hematology. 2017; 2017(1): 298–303. DOI: 10.1182/asheducation-2017.1.298.

17. Noerenberg D., Briest F., Hennch C., et al. Genetic Characterization of Primary Mediastinal B-Cell Lymphoma: Pathogenesis and Patient Outcomes. J Clin Oncol. 2024; 42(4): 452–6. DOI: 10.1200/JCO.23.01053.

18. Swerdlow S.H., Campo E., Pileri S. A., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20): 2375–90. DOI: 10.1182/blood-2016-01-643569.

19. Sidorova J.V., Biderman B. V., Nikulina E.E., et al. A simple and efficient method for DNA extraction from skin and paraffi n-embedded tissues applicable to T-cell clonality assays. Exp Dermatol. 2012; 21(1): 57–60. DOI: 10.1111/j.1600-0625.2011.01375.x.

20. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15): 2114–20. DOI: 10.1093/bioinformatics/btu170.

21. Li H., Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010; 26(5): 589–95. DOI: 10.1093/bioinformatics/btp698.

22. Li H., Handsaker B., Wysoker A., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16): 2078–9. DOI: 10.1093/bioinformatics/btp352.

23. Lai Z., Markovets A., Ahdesmaki M., et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016; 44(11): e108. DOI: 10.1093/nar/gkw227.

24. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research. 2010; 38(16): e164. DOI: 10.1093/nar/gkq603.

25. Expanding Genomic Clinical Knowledge — Together! Franklin. https://franklin.genoox.com/variant/snp/chr1-237821276-T-C

26. SESHAT: http://vps338341.ovh.net/

27. Kandoth C., McLellan M. D., Vandin F., et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502(7471): 333–9. DOI: 10.1038/nature12634.

28. Agupitan A.D., Neeson P., Williams S., et al. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. IJMS. 2020; 21(10): 3452. DOI: 10.3390/ijms21103452.

29. Haapaniemi E., Botla S., Persson J., et al. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018; 24(7): 927–30. DOI: 10.1038/s41591-018-0049-z.

30. Liu J., Gao J. Efficacy of immunotherapy as second-line or later-line therapy and prognostic significance of KRAS or TP53 mutations in advanced nonsmall cell lung cancer patients. Eur J Cancer Prev. 2023; 32(6): 590–9. DOI: 10.1097/CEJ.0000000000000799.

31. Hallek M., Al-Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol. 2021; 96(12): 1679– 705. DOI: 10.1002/ajh.26367.

32. Sehn L.H., Salles G. Diffuse Large B-Cell Lymphoma. N Engl J Med. 2021; 384(9): 842–58. DOI: 10.1056/NEJMra2027612.

33. Wright G.W., Huang D. W., Phelan J. D., et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell. 2020; 37(4): 551-68.e14. DOI: 10.1016/j.ccell.2020.03.015.

34. Schmitz R. Wright G. W., Huang D. W., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018; 378(15): 1396–407. DOI: 10.1056/NEJMoa1801445.

35. Chapuy B., Stewart C., Dunford A. J., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018; 24(5): 679–90. DOI: 10.1038/s41591-018-0016-8.

36. Lacy S.E., Barrans S. L., Beer P. A., et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. Blood. 2020; 135(20): 1759–71. DOI: 10.1182/BLOOD.2019003535.

37. Hartmann S., Schuhmacher B., Rausch T., et al. Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia. 2016; 30(4): 844–53. DOI: 10.1038/leu.2015.328

38. Gabeeva N.G., Koroleva D.A., Tatarnikova S.A., et al. Interim results of the PML-16, PML-19 protocols for primary mediastinal large B-cell lymphoma therapy. Gematologiya i transfuziologiya. 2022; 67(3): 328–50 (In Russian). DOI: 10.35754/0234-5730-2022-67-3-328-350.

39. Eberle F.C., Salaverria I., Steidl C., et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011; 24(12): 1586–97. DOI: 10.1038/modpathol.2011.116.

40. Eberle F.C., Rodriguez-Canales J., Wei L., et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large Bcell lymphoma. Haematologica. 2011; 96(4): 558–66. DOI: 10.3324/HAEMATOL.2010.033167.

41. Pittaluga S., Nicolae A., Wright G.W., et al. Gene Expression Profiling of Mediastinal Gray Zone Lymphoma and Its Relationship to Primary Mediastinal B-cell Lymphoma and Classical Hodgkin Lymphoma. Blood Cancer Discov. 2020; 1(2): 155–61. DOI: 10.1158/2643-3230.BCD-20-0009.

42. Rosenwald A., Wright G., Leroy K., et al. Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma. J Exp Med. 2003; 198(6): 851–62. DOI: 10.1084/JEM.20031074.

43. Sarkozy C., Copie-Bergman C., Damotte D., et al. Gray-zone Lymphoma Between cHL and Large B-Cell Lymphoma: A Histopathologic Series From the LYSA. Am J Surg Pathol. 2019; 43(3): 341–51. DOI: 10.1097/PAS.0000000000001198.

44. Traverse-Glehen A., Pittaluga S., Gaulard P., et al. Mediastinal Gray Zone Lymphoma: The Missing Link Between Classic Hodgkin’s Lymphoma and Mediastinal Large B-Cell Lymphoma. Am J Surg Pathol. 2005; 29(11): 1411–21. DOI: 10.1097/01.pas.0000180856.74572.73.

45. Sarkozy C., Hung S. S., Chavez E. A., et al. Mutational landscape of gray zone lymphoma. Blood. 2021; 137(13): 1765–76. DOI: 10.1182/blood.2020007507.

46. Cao Y., Zhu T., Zhang P., et al. Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors. Oncotarget. 2016; 7(50): 83294–307. DOI: 10.18632/ONCOTARGET.13065.

47. Qin Y., He X., Chen X., et al. Efficacy and safety of PD‐1 monoclonal antibody plus rituximab in relapsed/refractory diffuse large B cell lymphoma patients. Eur J Haematol. 2023; 111(3): 356–64. DOI: 10.1111/EJH.14013.

48. Donzel M., Pesce F., Trecourt A., et al. Molecular Characterization of Primary Mediastinal Large B-Cell Lymphomas. Cancers. 2023; 15(19): 4866. DOI: 10.3390/CANCERS15194866/S1.

49. Abramova T. V., Mangasarova Ya. K., Selivanova D. S., et al. Study of the mutational status of B2M and CD58 genes in patients with primary mediastinal large B-cell lymphoma. Gematologiya I Transfusiologiya. 2024; 69(2 Suppl): 22 (In Russian).

50. Kaur H.B., Lu J., Guedes L. B., et al. TP53 missense mutation is associated with increased tumor-infi ltrating T cells in primary prostate cancer. Human Pathol. 2019; 87: 95–102. DOI: 10.1016/j.humpath.2019.02.006.

51. Hellmann M.D., Nathanson T., Rizvi H., et al. Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell. 2018; 33(5): 843–52.e4. DOI: 10.1016/j.ccell.2018.03.018.

52. Lin X., Wang L., Xie X., et al. Prognostic Biomarker TP53 Mutations for Immune Checkpoint Blockade Therapy and Its Association With Tumor Microenvironment of Lung Adenocarcinoma. Front. Mol. Biosci. 2020; 7: 602328. DOI: 10.3389/fmolb.2020.602328.

53. Zinzani P.L., Thieblemont C., Melnichenko V., et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma: Final Analysis of KEYNOTE-170. Blood J. 2023; 142(2): 141–5. DOI: 10.1182/blood.2022019340.

54. Schuster C., Berger A., Hoelzl M. A. et al. The cooperating mutation or “second hit” determines the immunologic visibility toward MYC-induced murine lymphomas. Blood. 2011; 118(17): 4635–45. DOI: 10.1182/blood-2010-10-313098.

55. Best O.G., Gardiner A. C., Davis Z. A., et al. A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia. 2009; 23(1): 212–4. DOI: 10.1038/leu.2008.260.


Review

For citations:


Mangasarova Y.K., Biderman B.V., Obukhova T.N., Abdurashidova R.R., Abramova T.V., Magomedova A.U., Chabaeva Yu.A., Gabeeva N.G., Zvonkov E.E., Sudarikov А.B. TP53 gene mutations and cytogenetic aberrations in tumor cells of patients with primary mediastinal B-cell large cell lymphoma. Russian journal of hematology and transfusiology. 2025;70(1):27-39. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-1-27-39

Views: 392


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)