NanoLuc/h-coelenterazine: an efficient pair for bioluminescence imaging in vivo and in vivo
https://doi.org/10.35754/0234-5730-2025-70-2-146-155
Abstract
Introduction. Bioluminescent labeling of tumor cells is becoming the standard in preclinical studies of novel anti-cancer drugs. Despite the variety of luciferases, many are not suitable for in vivo imaging.
Aim: to compare different Nanolux substrates in vitro and demonstrate the feasibility of using the NLuc/h-coelenterazine pair for in vivo imaging of disseminated tumor cells using the IVIS Spectrum system.
Materials and methods. The target cell line and T-cells expressing chimeric antigen receptors (CAR) were obtained via lentiviral cell transduction. Luminescence was measured with a Luminoskan™ Microplate Luminometer, while in vivo imaging in an NSG mouse model of CAR T-cell therapy was performed using the IVIS Spectrum system.
Results. Various substrates were compared in vitro for luminescence brightness and stability.
Additionally, the use of h-coelenterazine in combination with Nluc luciferase was demonstrated for in vivo cell imaging in mice. A genetically modified Nalm6-NLuc-CopGFP cell line was successfully obtained.
Conclusion. The comparison of various Nluc substrates in vitro and in vivo identified an optimal enzyme/substrate pair, which can serve as a valuable tool for assessing efficacy, safety and toxicity of compounds and cellular products being developed for antitumor therapy. The plasmid encoding Nluc can also be used to modify other cell lines necessary for the development and characterization of new gene therapy approaches.
Keywords
About the Authors
T. N. BelovezhetsRussian Federation
Tatyana N. Belovezhets - Research Fellow Laboratory of Antibody Engineering Institute of Molecular and Cellular Biology of the SB RAS; Junior Researcher Research Department of Immuno-Oncology of Research Centre Personalized Oncology Almazov National Medical Research Centre.
197341, Saint Petersburg; 630090, Novosibirsk
D. V. Gladkikh
Russian Federation
Daniil V. Gladkikh - Cand. Sci. (Biol.), junior researcher Laboratory of Nucleic Acids Bioсhemistry Institute of Chemical Biology and Fundamental Medicine of the SB RAS.
630090, Novosibirsk
V. O. Omelchenko
Russian Federation
Vitaliy O. Omelchenko - Cand. Sci. (Med.), Research fellow Laboratory of Connective tissue disease Research Institute of Clinical and Experimental Lymрhology — Branch of the Institute of Cytology and Genetics of the SB RAS.
630117, Novosibirsk
O. Y. Volkova
Russian Federation
Olga Y. Volkova - Cand. Sci. (Biol.), Senior Research Fellow Laboratory of Immunogenetics Institute of Molecular and Cellular Biology of the SB RAS.
630090, Novosibirsk
A. V. Taranin
Russian Federation
Alexander V. Taranin - Dr. Sci. (Biol.), head Laboratory of Immunogenetics Institute of Molecular and Cellular Biology of the SB RAS.
630090, Novosibirsk
S. V. Kulemzin
Russian Federation
Sergey V. Kulemzin - Cand. Sci.(Biol.), Head of Laboratory of Biosensor Technologies of Institute of Medicine and Medical Technologies.
630090, Novosibirsk
References
1. Emami-Shahri N., Foster J., Kashani R., et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 2018;9:1081. DOI: 10.1038/s41467-018-03524-1.
2. Sakemura R., Can I., Siegler E.L., Kenderian S.S. In vivo CART cell imaging: Paving the way for success in CART cell therapy. Mol Ther Oncolytics. 2021;20:625–33. DOI: 10.1016/j.omto.2021.03.003.
3. Skovgard M.S., Hocine H.R., Saini J.K., et al. Imaging CAR T-cell kinetics in solid tumors: Translational implications. Mol Ther Oncolytics. 2021;22:355–67. DOI: 10.1016/j.omto.2021.06.006.
4. Mitra A., Barua A., Huang L., et al. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol. 2023;14:1188049. DOI: 10.3389/fimmu.2023.1188049.
5. Joy R., Phair K., O’Hara R., Brady D. Recent advances and current challenges in CAR-T cell therapy. Biotechnol Lett. 2024;46:115–26. DOI: 10.1007/s10529023-03461-0.
6. Müller F., Boeltz S., Knitza J., et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. 2023;401:815–8. DOI: 10.1016/S01406736(23)00023-5.
7. Bergmann C., Müller F., Distler J.H.W., et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. 2023;82:1117–20. DOI: 10.1136/ard-2023-223952.
8. Uslu U., June C.H. Beyond the blood: expanding CAR T cell therapy to solid tumors. Nat Biotechnol. 2025; 43:506-515. DOI:10.1038/s41587-024-02446-2.
9. Li Y., Liu M., Cui J., et al. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability. Oncol Lett. 2018;15:6203–10. DOI: 10.3892/ol.2018.8132.
10. Shimomura O. Bioluminescence: chemical principles and methods; WORLD SCIENTIFIC, 2006., ISBN 978-981-256-801-4.
11. Martini S., Haddock S.H.D. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci Rep. 2017;7:45750. DOI: 10.1038/srep45750.
12. Frank L.A., Krasitskaya V.V. Coelenterazine-Dependent Luciferases: Properties and Application in Molecular Analysis. Moscow Univ Chem Bull. 2024;79:203– 10. DOI: 10.3103/S0027131424700184.
13. Tannous B.A., Kim D.-E., Fernandez J.L., et al. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther. 2005;11:435–43. DOI: 10.1016/j.ymthe.2004.10.016.
14. Contag P.R., Olomu I.N., Stevenson D.K., Contag C.H. Bioluminescent indicators in living mammals. Nat. Med. 1998;4:245–7. DOI: 10.1038/nm0298-245.
15. Germain-Genevois C., Garandeau O., Couillaud F. Detection of brain tumors and systemic metastases using nanoluc and fluc for dual reporter imaging. Mol Imaging Biol. 2016;18:62–9. DOI: 10.1007/s11307-015-0864-2.
16. Markova S.V., Golz S., Frank L.A., et al. Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme. J. Biol. Chem. 2004;279:3212–7. DOI: 10.1074/jbc.M309639200.
17. Nakajima Y., Kobayashi K., Yamagishi K., et al. cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 2004;68:565–70. DOI: 10.1271/bbb.68.565.
18. Thompson E.M., Nagata S., Tsuji F.I. Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci USA. 1989;86:6567–71. DOI: 10.1073/pnas.86.17.6567.
19. Suzuki C., Nakajima Y., Akimoto H., et al. A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene. 2005;344:61–6, DOI: 10.1016/j.gene.2004.09.028.
20. Shimomura, O. Masugi T., Johnson F.H., Haneda Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry. 1978;17:994–8. DOI: 10.1021/bi00599a008.
21. Hall M.P., Unch J., Binkowski B.F., et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 2012;7:1848–57. DOI: 10.1021/cb3002478.
22. Stacer A.C., Nyati S., Moudgil P., et al. NanoLuc reporter for dual luciferase imaging in living animals. Mol. Imaging. 2013;12:1–13. DOI: 10.2310/7290.2013.00062.
23. Gaspar N., Walker J.R., Zambito G., et al. Evaluation of NanoLuc substrates for bioluminescence imaging of transferred cells in mice. J Photochem Photobiol B. 2021;216:112128. DOI: 10.1016/j.jphotobiol.2021.112128.
24. Chu J., Oh Y., Sens A., et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat Biotechnol. 2016;34:760–7. DOI: 10.1038/nbt.3550.
25. Kutner R.H., Zhang X.-Y., Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc. 2009;4:495–505. DOI: 10.1038/nprot.2009.22.
26. Brentjens R.J., Rivière I., Park J.H., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–28. DOI: 10.1182/blood-2011-04-348540.
27. Belovezhets T., Kulemzin S., Volkova O., et al. Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based AntigenRecognition Moieties Int J Mol. Sci. 2023;24:3698. DOI: 10.3390/ijms24043698.
28. Shipunova V.O., Shilova O.N., Shramova E.I., et al. A Highly Specific Substrate for NanoLUC Luciferase Furimazine Is Toxic in vitro and in vivo. Russ J Bioorg Chem. 2018;44:225–8. DOI: 10.1134/S1068162018020085.
29. Taylor A., Sharkey J., Plagge A., et al. Multicolour In Vivo Bioluminescence Imaging Using a NanoLuc-Based BRET Reporter in Combination with Firefly Luciferase. Contrast Media Mol Imaging. 2018;2018:2514796. DOI: 10.1155/2018/2514796.
30. Inouye S., Sahara-Miura Y., Sato J., et al. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines. Protein Expr Purif. 2013;88:150–6. DOI:10.1016/j.pep.2012.12.006.
31. Inouye S., Sasaki S. Blue fluorescent protein from the calcium-sensitive photoprotein aequorin: catalytic properties for the oxidation of coelenterazine as an oxygenase. FEBS Lett. 2006;580:1977–82. DOI: 10.1016/j.febslet.2006.02.065.
Review
For citations:
Belovezhets T.N., Gladkikh D.V., Omelchenko V.O., Volkova O.Y., Taranin A.V., Kulemzin S.V. NanoLuc/h-coelenterazine: an efficient pair for bioluminescence imaging in vivo and in vivo. Russian journal of hematology and transfusiology. 2025;70(2):146-155. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-2-146-155