Preview

Гематология и трансфузиология

Расширенный поиск

Синдром высвобождения цитокинов после терапии Т-клетками с химерным антигенным рецептором: патофизиология, клинические проявления и новые подходы к лечению

https://doi.org/10.35754/0234-5730-2025-70-2-229-244

Аннотация

Введение. Внедрение терапии Т-клетками с химерным антигенным рецептором (Chimeric antigen receptor, CAR T) в клиническую практику изменило международные стандарты лечения B-клеточных лейкозов, лимфом и множественной миеломы. Наряду с высокой противоопухолевой активностью CAR T-терапия сопровождается нежелательными явлениями: синдром высвобождения цитокинов (СВЦ), с иммунными клетками ассоциированный нейротоксический синдром (ИКАНС), синдром активации макрофагов (САМ).

Цель — представить данные о механизмах иммунной токсичности CAR T-терапии, ее клинических проявлениях, а также стратегиях профилактики и лечения.

Основные сведения. СВЦ — гипервоспалительное состояние, в основе клинических проявлений которого лежат активация и нарушение проницаемости эндотелия. Генетическая предрасположенность к СВЦ связана с полиморфизмом генов адгезии и активации иммунных клеток. В патогенезе играют роль гиперпродукция цитокинов интерлейкинов 1β, 6, 8, 10, интерферона-γ, снижение экспрессии молекул адгезии эндотелием, гиперпродукция факторов проницаемости, интерстициальный отек органов и их дисфункция. Другие осложнения: ИКАНС и САМ. Терапия СВЦ основывается на применении глюкокортикоидов и антицитокиновой терапии. Значительная доля негативных исходов связана с ИКАНС и САМ. Перспективным направлением лечения является применение антагонистов интерлейкина-1.

Об авторах

К. В. Лепик
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Лепик Кирилл Викторович - кандидат медицинских наук, руководитель отдела биотехнологий НИИ детской онкологии, гематологии и трансплантологии им. Р. М. Горбачевой.

197022, Санкт-Петербург



Т. Ю. Дергачева
АО «Р-Фарм»
Россия

Дергачева Татьяна Юрьевна - директор департамента по медицинской поддержке онкологических продуктов Медицинской дирекции АО «Р-Фарм».

123154, Москва



М. О. Попова
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Попова Марина Олеговна - кандидат медицинских наук, доцент кафедры гематологии трансфузиологии и трансплантологии с курсом детской онкологии.

197022, Санкт-Петербург



А. Н. Андрианов
АО «Р-Фарм»
Россия

Андрианов Андрей Николаевич - кандидат медицинских наук, научный советник научной группы исследований в онкологии отдела медицинской документации департамента доклинической и клинической разработки медицинской дирекции АО «Р-Фарм».

123154, Москва



М. Ю. Самсонов
АО «Р-Фарм»
Россия

Самсонов Михаил Юрьевич - кандидат медицинских наук, медицинский директор медицинской дирекции АО «Р-Фарм».123154, Москва



И. С. Моисеев
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Моисеев Иван Сергеевич - доктор медицинских наук, заместитель директора по научной работе «НИИ детской онкологии, гематологии и трансплантологии им. Р. М. Горбачевой».

197022, Санкт-Петербург



Список литературы

1. Cancer TODAY | IARC. Lyon: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today

2. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.

3. Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность) МНИОИ им. П.А. Герцена— филиал ФГБУ «НМИЦ радиологии» Минздрава России, М., 2024.

4. Almasbak H., Aarvak T., Vemuri M.C. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:5474602. DOI: 10.1155/2016/5474602.

5. Sterner R.C., Sterner R.M. CAR T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. DOI: 10.1038/s41408-021-00459-7.

6. Guedan S., Calderon H., Posey A.D. Jr., Maus M.V. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2019;12:145–56. DOI: 10.1016/j.omtm.2018.12.009.

7. Zhao J., Lin Q., Song Y., Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11:132. DOI: 10.1186/s13045-018-0677-2.

8. Cappell K.M., Kochenderfer J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat Rev Clin Oncol. 2023;20:359–71. DOI: 10.1038/s41571-023-00754-1.

9. Ying Z., Yang H., Guo Y., et al. Relmacabtagene autoleucel (relma-cel) CD19 CAR T therapy for adults with heavily pretreated relapsed/refractory large Bcell lymphoma in China. Cancer Med. 2021;10:999–1011. DOI: 10.1002/cam4.3686.

10. India’s First Homegrown CAR T-Cell Therapy Has Roots in NCI Collaboration. National Cancer Institute; 2024. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2024/nexcar19-CART-cell-therapy-indianci-collaboration

11. Попова М.О. Маркелов В.В. CAR T: от идеи до применения. Онкогематология. 2024;19(3):185–98. DOI: 10.17650/1818-8346-202419-3-185-198.

12. Roddie C., Sandhu K.S., Tholouli E., et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N Engl J Med. 2024;391(23):2219– 30. DOI: 10.1056/NEJMoa2406526.

13. Depil S., Duchateau P., Grupp S.A., et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19:185–99. DOI: 10.1038/s41573-019-0051-2.

14. Qi C., Zhang Y., Liu D., et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022;28(6):1189–98. DOI: 10.1038/s41591-022-01800-8.

15. Brudno J.N., Kochenderfer J.N. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112–21. DOI: 10.1200/JCO.2015.64.5929.

16. Rampotas A., Richter J., Isenberg D., et al. CAR T cell therapy embarks on autoimmune disease. Bone Marrow Transplant. 2025;60:6–9. DOI: 10.1038/s41409-024-02429-6.

17. Weinkove R., George P., Dasyam N., McLellan A.D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8:e1049. DOI: 10.1002/cti2.1049.

18. Brudno J.N., Kochenderfer J.N. Current understanding and management of CAR T cell-associated toxicities. Nat Rev Clin Oncol. 2024;21:501–21. DOI: 10.1038/s41571-024-00903-0.

19. Hay K.A., Hanafi L.A., Li D., et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. DOI: 10.1182/blood-2017-06-793141.

20. Lee D.W., Santomasso B.D., Locke F.L., et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. DOI: 10.1016/j.bbmt.2018.12.758.

21. Pennisi M., Jain T., Santomasso B.D., et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4(4):676–86. DOI: 10.1182/bloodadvances.2019000952.

22. Neelapu S.S., Tummala S., Kebriaei P., et al. Chimeric antigen receptor Tcell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. DOI: 10.1038/nrclinonc.2017.148.

23. Park J.H., Rivière I., Gonen M., et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. DOI: 10.1056/NEJMoa1709919.

24. Schuster S.J., Svoboda J., Chong E.A., et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. DOI: 10.1056/NEJMoa1708566.

25. Santomasso B.D., Nastoupil L.J., Adkins S., et al. Management of immunerelated adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992.

26. Murthy H., Iqbal M., Chavez J.C., Kharfan-Dabaja M.A. Cytokine release syndrome: current perspectives. Immunotargets Ther. 2019;8:43–52. DOI: 10.2147/ITT.S202015.

27. Sterner R.M., Sakemura R., Cox M.J., et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR T cell function in xenografts. Blood. 2019;133(7):697–709. DOI: 10.1182/blood-2018-10-881722.

28. Maude S.L., Barrett D., Teachey D.T., Grupp S.A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22. DOI: 10.1097/PPO.0000000000000035.

29. Flierl M.A., Rittirsch D., Nadeau B.A., et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature. 2007;449(7163):721–5. DOI: 10.1038/nature06185.

30. Wei J., Liu Y., Wang C., et al. The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduct Target Ther. 2020;5(1):134. DOI: 10.1038/s41392-020-00256-x.

31. Morris E.C., Neelapu S.S., Giavridis T., Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22(2):85–96. DOI: 10.1038/s41577-021-00547-6.

32. Hao Z., Li R., Meng L., et al. Macrophage, the potential key mediator in CAR T related CRS. Exp Hematol Oncol. 2020;9:15. DOI: 10.1186/s40164-02000171-5.

33. Giavridis T., van der Stegen S.J.C., Eyquem J., et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. DOI: 10.1038/s41591-018-0041-7.

34. Norelli M., Camisa B., Barbiera G., et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48. DOI: 10.1038/s41591-018-0036-4.

35. van der Stegen S.J., Davies D.M., Wilkie S., et al. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? J Immunol. 2013;191(9):4589–98. DOI: 10.4049/jimmunol.1301523.

36. Chen X., Kamperschroer C., Wong G., Xuan D. A modeling framework to characterize cytokine release upon T-cell-engaging bispecific antibody treatment: methodology and opportunities. Clin Transl Sci. 2019;12(6):600–8. DOI: 10.1111/cts.12662.

37. Moore J.B., June C.H.. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–4. DOI: 10.1126/science.abb8925.

38. Tvedt T.H.A., Vo A.K., Bruserud Ø., Reikvam H. Cytokine release syndrome in the immunotherapy of hematological malignancies: the biology behind and possible clinical consequences. J Clin Med. 2021;10(21):5190. DOI: 10.3390/jcm10215190.

39. Folco E.J., Mawson T.L., Vromman A., et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018;38(8):1901–12. DOI: 10.1161/ATVBAHA.118.311150.

40. Yoon J.G., Smith D.A., Tirumani S.H., et al. CAR T-Cell Therapy: An Update for Radiologists. AJR Am J Roentgenol. 2021;217(6):1461–74. DOI: 10.2214/AJR.21.26091.

41. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. DOI: 10.1186/s40425-0180343-9.

42. Sun K, Wang W, Gao L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science. 2020;371:eabe2424. DOI: 10.1126/science.abe2424.

43. Maude S.L., Laetsch T.W., Buechner J., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. DOI: 10.1056/NEJMoa1709866.

44. Neelapu S.S., Locke F.L., Bartlett N.L., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. DOI: 10.1056/NEJMoa1707447.

45. Shah B.D., Bishop M.R., Oluwole O.O., et al. KTE-X19 anti-CD19 CAR Tcell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood. 2021;138(1):11–22. DOI: 10.1182/blood.2020009098.

46. Maschan M., Caim, P.F., Reese-Koc J. et al. Multiple site place-of-care manufactured anti-CD19 CAR T cells induce high remission rates in B-cell malignancy patients. Nat Commun. 2021;12:7200. DOI: 10.1038/s41467-021-27312-6.

47. Roddie C., Sandhu K.S., Tholouli E., et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N Engl J Med. 2024;391(23):2219– 30. DOI: 10.1056/NEJMoa2406526.

48. Li M., Xue S.L., Tang X., et al. The differential effects of tumor burdens on predicting the net benefits of SSCART-19 cell treatment on R/R B-ALL patients. Sci Rep. 2022;12(1):378. DOI: 10.1038/s41598-021-04296-3.

49. Teachey D.T., Lacey S.F., Shaw P.A., et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79. DOI: 10.1158/2159-8290.CD-16-0040.

50. Sheth V.S., Gauthier J. Taming the beast: CRS and ICANS after CAR T-cell therapy for all. Bone Marrow Transplant. 2021;56(3):552–66. DOI: 10.1038/s41409-020-01080-8.

51. Yan Z., Zhang H., Cao J., et al. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 2021;12:611366. DOI: 10.3389/fimmu.2021.611366.

52. Sureda A., Corbacioglu S., Greco R., et al. Eds. The EBMT Handbook: Hematopoietic Cell Transplantation and Cellular Therapies. 8th ed. Cham (CH): Springer; 2024. PMID: 39437029.

53. Diorio C., Shaw P.A., Pequignot E., et al. Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Adv. 2020;4(20):5174–83. DOI: 10.1182/bloodadvances.2020002592.

54. Powell M.Z., Mara K.C., Bansal R., et al. Procalcitonin as a biomarker for predicting bacterial infection in chimeric antigen receptor T-cell therapy recipients. Cancer Med. 2023;12(8):9228–35. DOI: 10.1002/cam4.5665.

55. Schuster S.J., Maziarz R.T., Rusch E.S., et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9. DOI: 10.1182/bloodadvances.2019001304.

56. Rubin D.B., Al Jarrah A., Li K., et al. Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy. JAMA Neurol. 2020;77(12):1536–42. DOI: 10.1001/jamaneurol.2020.2816.

57. Curran K.J., Margossian S.P., Kernan N.A., et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–8. DOI: 10.1182/blood.2019001641.

58. Santomasso B.D., Park J.H., Salloum D., et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with Bcell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71. DOI: 10.1158/2159-8290.CD-17-1319.

59. Gust J., Hay K.A., Hanafi L.A., et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR T cells. Cancer Discov. 2017;7(12):1404–19. DOI: 10.1158/2159-8290.CD-17-0698.

60. Grant S.J., Grimshaw A.A., Silberstein J., et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022;28(6):294–302. DOI: 10.1016/j.jtct.2022.03.006.

61. Pennisi M., Jain T., Santomasso B.D., et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4(4):676–86. DOI: 10.1182/bloodadvances.2019000952.

62. Herr M.M., Chen G.L., Ross M., et al. Identification of neurotoxicity after chimeric antigen receptor (CAR) T cell infusion without deterioration in the immune effector cell encephalopathy (ICE) score. Biol Blood Marrow Transplant. 2020;26(11):e271–4. DOI: 10.1016/j.bbmt.2020.07.031.

63. Möhn N., Bonda V., Grote-Levi L., et al. Neurological management and work-up of neurotoxicity associated with CAR T cell therapy. Neurol Res Pract. 2022;4(1):1. DOI: 10.1186/s42466-021-00166-5.

64. Cohen A.D., Parekh S., Santomasso B.D., et al. Incidence and management of CAR T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 2022;12:32. DOI: 10.1038/s41408-022-00629-1.

65. Van Oekelen O., Aleman A., Upadhyaya B., et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR T cell therapy. Nat Med. 2021;27(12):2099–103. DOI: 10.1038/s41591021-01564-7.

66. Koch C., Fleischer J., Popov T., et al. Diabetes insipidus and Guillain-Barrélike syndrome following CAR T cell therapy: a case report. J Immunother Cancer. 2023;11(1):e006059. DOI: 10.1136/jitc-2022-006059.

67. Gabay C., Emery P., van Vollenhoven R., et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381(9877):1541– 50. DOI: 10.1016/S0140-6736(13)60250-0.

68. Bijlsma J.W.J., Welsing P.M.J., Woodworth T.G., et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388(10042):343–55. DOI: 10.1016/S0140-6736(16)30363-4.

69. Le R.Q., Li L., Yuan W., et al. FDA approval summary: Tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7. DOI: 10.1634/theoncologist.2018-0028.

70. Tolstykh D.A., Tsukur A.A., Lomkova E.A., et al. Vodnaya farmatsevticheskaya kompozitsiya levilimaba i ee primenenie [Aqueous pharmaceutical composition of levilimab and its use]. Patent RF No. 2745814 C1; ZAO “BIOKAD” (patentoobladatel’). Zayavl. 05.06.2020; Opubl. 01.04.2021, Byul. No. 10.

71. Schuster S.J., Maziarz R.T., Rusch E.S., et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9. DOI: 10.1182/bloodadvances.2019001304.

72. Strati P., Ahmed S., Furqan F., et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. DOI: 10.1182/blood.2020008865.

73. Nellan A., McCully C.M.L., Cruz Garcia R., et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018;132(6):662–6. DOI: 10.1182/blood-2018-05-846428.

74. Balis F.M., Lester C.M., Chrousos G.P., et al. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):202–7. DOI: 10.1200/JCO.1987.5.2.202.

75. Labar B., Suciu S., Willemze R., et al. Dexamethasone compared to prednisolone for adults with acute lymphoblastic leukemia or lymphoblastic lymphoma: final results of the ALL-4 randomized, phase III trial of the EORTC Leukemia Group. Haematologica. 2010;95(9):1489–95. DOI: 10.3324/haematol.2009.018580.

76. Gardner R.A., Ceppi F., Rivers J., et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–58. DOI: 10.1182/blood.2019001463.

77. Hines M.R., Knight T.E., McNerney K.O., et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transplant Cell Ther. 2023;29(7):438.e1–e16. DOI: 10.1016/j.jtct.2023.03.006.

78. Chen F., Teachey D.T., Pequignot E., et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods. 2016;434:1–8. DOI: 10.1016/j.jim.2016.03.005.

79. Titov A., Petukhov A., Staliarova A., et al. The biological basis and clinical symptoms of CAR T therapy-associated toxicities. Cell Death Dis. 2018;9(9):897. DOI: 10.1038/s41419-018-0918-x.

80. Zhang L., Wang S., Xu J., Zhang R., et al. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol. 2021;10(1):16. DOI: 10.1186/s40164-021-00209-2.

81. Strati P., Ahmed S., Kebriaei P., et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4(13):3123–7. DOI: 10.1182/bloodadvances.2020002328.

82. Brovko M.Yu., Novikov P.I., Nabatchikova E.A., et al. Comparative efficacy of olokizumab and tocilizumab in hospitalized patients with COVID-19. Klinicheskaya farmakologiya i terapiya. 2022;31(3):9–15 (In Russian). DOI: 10.32756/0869-5490-2022-3-9-15.

83. Park J.H., Nath K., Devlin S.M., et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med. 2023;29(7):1710–7. DOI: 10.1038/s41591-023-02404-6.

84. Frigault M.J., Yao E., Berger T.R., et al. Single-cell dynamics of breakthrough toxicities following anakinra prophylaxis for axicabtagene ciloleucel in lymphoma. Blood Adv. 2025;9(9):2122–35. DOI: 10.1182/bloodadvances.2024015161.

85. Shi Y., Liu C.H., Roberts A.I., et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–33. DOI: 10.1038/sj.cr.7310017.

86. Yi Y., Chai X., Zheng L., et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 2021;7(1):27. DOI: 10.1038/s41421-021-00255-4.

87. Kenderian S.S., Oluwole O.O., McCarthy P.L., et al. ZUMA-19: A phase 1/2 multicenter study of lenzilumab use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed or refractory large B cell lymphoma (R/R LBCL). Blood. 2020;136(Suppl 1):6–7.

88. Banerjee R., Marsal J., Huang C.Y., et al. Early time-to-tocilizumab after B cell maturation antigen-directed chimeric antigen receptor T cell therapy in myeloma. Transplant Cell Ther. 2021;27(6):477.e1–e7. DOI: 10.1016/j.jtct.2021.03.004.

89. Penack O., Peczynski C., Boreland W., et al. Management of complications of chimeric antigen receptor T-cell therapy: a report by the European Society of Blood and Marrow Transplantation. Haematologica. 2024;109(11):3557–65. DOI: 10.3324/haematol.2023.284810.

90. McNerney K.O., Si Lim S.J., Ishikawa K., et al. HLH-like toxicities predict poor survival after the use of tisagenlecleucel in children and young adults with B-ALL. Blood Adv. 2023;7(12):2758–71. DOI: 10.1182/bloodadvances.2022008893.

91. Lichtenstein D.A., Schischlik F., Shao L., et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood. 2021;138(24):2469–84. DOI: 10.1182/blood.2021011898.

92. Sandler R.D., Tattersall R.S., Schoemans H., et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR T cell therapy in adults; a review of the literature and a survey of practice within EBMT centres. Front Immunol. 2020;11:524. DOI: 10.3389/fimmu.2020.00524.

93. Diorio C., Vatsayan A., Talleur A.C., et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 2022;6(11):3398–403. DOI: 10.1182/bloodadvances.2022006983.

94. Cai W., Lu Y., He H., et al. Efficacy of emapalumab in the management of anti-CD19 chimeric antigen receptor T cell therapy associated cytokine release syndrome: A report of two cases. Oncol Lett. 2024;29(2):71. DOI: 10.3892/ol.2024.14817.

95. Baldo F., Erkens R.G.A., Mizuta M., et al. Current treatment in macrophage activation syndrome worldwide: a systematic literature review to inform the METAPHOR project. Rheumatology (Oxford). 2025;64(1):32–44. DOI: 10.1093/rheumatology/keae391.

96. Zhang Q., Zhao Y.Z., Ma H.H., et al. A study of ruxolitinib response-based stratified treatment for pediatric hemophagocytic lymphohistiocytosis. Blood. 2022;139(24):3493–504. DOI: 10.1182/blood.2021014860.

97. Myachikova V.Yu., Maslyanskiy A.L., Moiseeva O.M. Idiopathic recurrent pericarditis — a new orphan autoinflammatory disease? A retrospective analysis of cases of idiopathic recurrent pericarditis and a design of a double-blind, randomized, placebo-controlled study to evaluate the efficacy and safety of RPH-104 treatment in patients with idiopathic recurrent pericarditis. Kardiologiia. 2021;61(1):72–7. DOI: 10.18087/cardio.2021.1.n1475.

98. Samsonov M., Bogin V., Van Tassell B.W., Abbate A. Interleukin-1 blockade with RPH-104 in patients with acute ST-elevation myocardial infarction: study design and rationale. J Transl Med. 2021;19:169. DOI: 10.1186/s12967-02102828-z.

99. Krotkova A., Shipaeva E., Luetjens C.M., et al. Toxicity and Pharmacokinetics of novel IL-1 Trap heterodimeric fusion protein. Toxicol Lett. 2015;238(2):S311. ISSN 0378-4274. DOI: 10.1016/j.toxlet.2015.08.889.


Рецензия

Для цитирования:


Лепик К.В., Дергачева Т.Ю., Попова М.О., Андрианов А.Н., Самсонов М.Ю., Моисеев И.С. Синдром высвобождения цитокинов после терапии Т-клетками с химерным антигенным рецептором: патофизиология, клинические проявления и новые подходы к лечению. Гематология и трансфузиология. 2025;70(2):229-244. https://doi.org/10.35754/0234-5730-2025-70-2-229-244

For citation:


Lepik K.V., Dergacheva T.Yu., Popova M.O., Andrianov A.N., Samsonov M.Yu., Moiseev I.S. Cytokine release syndrome following chimeric antigen receptor T-cell therapy: Pathophysiology, clinical manifestations, and novel therapeutic approaches. Russian journal of hematology and transfusiology. 2025;70(2):229-244. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-2-229-244

Просмотров: 34


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)