Preview

Russian journal of hematology and transfusiology

Advanced search

Cytokine release syndrome following chimeric antigen receptor T-cell therapy: Pathophysiology, clinical manifestations, and novel therapeutic approaches

https://doi.org/10.35754/0234-5730-2025-70-2-229-244

Abstract

Introduction. The introduction of chimeric antigen receptor (CAR) T-cell therapy into clinical practice has transformed international treatment standards for B-cell leukemias, lymphomas, and multiple myeloma. Alongside its high antitumor activity, CAR T-cell therapy is associated with a unique profile of adverse events, including cytokine release syndrome (CRS), immune cell-associated neurotoxic syndrome (ICANS), and macrophage activation syndrome (MAS).

Aim: To present data on the mechanisms of immune toxicity of CAR T-cell therapy, its clinical manifestations, as well as prevention and treatment strategies.

Basic information. CRS is a self-sustaining hyperinflammatory condition with a specific spectrum of clinical manifestations, driven by endothelial activation and increased permeability. Genetic predisposition to CRS is associated with polymorphisms in genes involved in immune cell adhesion and activation. Key stages of pathogenesis include hyperproduction of cytokines, particularly interleukins (IL)-1β, 6, 8, 10, and interferon-γ, reduced expression of endothelial adhesion molecules, overproduction of permeability factors, and consequent interstitial organ edema and dysfunction. Conditions closely associated with CRS include immune effector cell-associated neurotoxicity syndrome (ICANS) and macrophage activation syndrome/secondary hemophagocytic lymphohistiocytosis (MAS). Treatment of CRS is based on the use of glucocorticosteroids and anticytokine monoclonal antibodies targeting the IL-6 receptor, IL-6 itself, IL-1, and interferon-γ. However, a significant proportion of adverse outcomes are driven by ICANS and MAS. The most promising treatment approach for these conditions currently involves the use of interleukin-1 antagonists, which may mitigate these severe immune toxicities.

About the Authors

K. V. Lepik
Pavlov First Saint Petersburg State Medical University
Russian Federation

Kirill V. Lepik - Cand. Sci. (Med.), Head of the Biotechnology Department, R. M. Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation.

197022, Saint Petersburg



T. Yu. Dergacheva
JSC R-Pharm
Russian Federation

Tatyana Yu. Dergacheva - Director of the Department for Medical Support of Oncology Products, Medical Directorate.

123154, Moscow



M. O. Popova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Marina O. Popova - Cand. Sci. (Med.), Associate Professor, Department of Hematology, Transfusiology and Transplantology with the Course of Pediatric Oncology, Faculty of Postgraduate Education named after Professor B. V. Afanasyev.

197022, Saint Petersburg



A. N. Andrianov
JSC R-Pharm
Russian Federation

Andrey N. Andrianov - Cand. Sci. (Med.), Scientifi c Advisor, Medical Documentation Division, Department of Preclinical and Clinical Development, Medical Directorate.

123154, Moscow



M. Yu. Samsonov
JSC R-Pharm
Russian Federation

Mikhail Yu. Samsonov - Cand. Sci. (Med.), Chief Medical Officer, Medical Directorate.

123154, Moscow



I. S. Moiseev
Pavlov First Saint Petersburg State Medical University
Russian Federation

Ivan S. Moiseev - Dr. Sci. (Med.), Deputy Director for Research, R. M. Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation.

197022, Saint Petersburg



References

1. Cancer TODAY | IARC. Lyon: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today

2. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.

3. Kaprin AD, Starinskiy VV, Shakhzadova AO. Malignant neoplasms in Russia in 2023 (morbidity and mortality). Zlokachestvennye novoobrazovaniya v Rossii. Moscow. National Medical Research Radiological Centre. 2024 (In Russian).

4. Almasbak H., Aarvak T., Vemuri M.C. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:5474602. DOI: 10.1155/2016/5474602.

5. Sterner R.C., Sterner R.M. CAR T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. DOI: 10.1038/s41408-021-00459-7.

6. Guedan S., Calderon H., Posey A.D. Jr., Maus M.V. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2019;12:145–56. DOI: 10.1016/j.omtm.2018.12.009.

7. Zhao J., Lin Q., Song Y., Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11:132. DOI: 10.1186/s13045-018-0677-2.

8. Cappell K.M., Kochenderfer J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat Rev Clin Oncol. 2023;20:359–71. DOI: 10.1038/s41571-023-00754-1.

9. Ying Z., Yang H., Guo Y., et al. Relmacabtagene autoleucel (relma-cel) CD19 CAR T therapy for adults with heavily pretreated relapsed/refractory large Bcell lymphoma in China. Cancer Med. 2021;10:999–1011. DOI: 10.1002/cam4.3686.

10. India’s First Homegrown CAR T-Cell Therapy Has Roots in NCI Collaboration. National Cancer Institute; 2024. Available from: https://www.cancer.gov/ news-events/cancer-currents-blog/2024/nexcar19-CART-cell-therapy-indianci-collaboration

11. Popova MO, Markelov VV. CAR T: from concept to clinical practice. Onkogematologiya. 2024;19(3):185–98 (In Russian). DOI: 10.17650/1818-83462024-19-3-185-198.

12. Roddie C., Sandhu K.S., Tholouli E., et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N Engl J Med. 2024;391(23):2219– 30. DOI: 10.1056/NEJMoa2406526.

13. Depil S., Duchateau P., Grupp S.A., et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19:185–99. DOI: 10.1038/s41573-019-0051-2.

14. Qi C., Zhang Y., Liu D., et al. Claudin18.2-specifi c CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022;28(6):1189–98. DOI: 10.1038/s41591-022-01800-8.

15. Brudno J.N., Kochenderfer J.N. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112–21. DOI: 10.1200/JCO.2015.64.5929.

16. Rampotas A., Richter J., Isenberg D., et al. CAR T cell therapy embarks on autoimmune disease. Bone Marrow Transplant. 2025;60:6–9. DOI: 10.1038/s41409-024-02429-6.

17. Weinkove R., George P., Dasyam N., McLellan A.D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8:e1049. DOI: 10.1002/cti2.1049.

18. Brudno J.N., Kochenderfer J.N. Current understanding and management of CAR T cell-associated toxicities. Nat Rev Clin Oncol. 2024;21:501–21. DOI: 10.1038/s41571-024-00903-0.

19. Hay K.A., Hanafi L.A., Li D., et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modifi ed T-cell therapy. Blood. 2017;130(21):2295–306. DOI: 10.1182/blood-2017-06-793141.

20. Lee D.W., Santomasso B.D., Locke F.L., et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. DOI: 10.1016/j.bbmt.2018.12.758.

21. Pennisi M., Jain T., Santomasso B.D., et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4(4):676–86. DOI: 10.1182/bloodadvances.2019000952.

22. Neelapu S.S., Tummala S., Kebriaei P., et al. Chimeric antigen receptor Tcell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. DOI: 10.1038/nrclinonc.2017.148.

23. Park J.H., Rivière I., Gonen M., et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. DOI: 10.1056/NEJMoa1709919.

24. Schuster S.J., Svoboda J., Chong E.A., et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. DOI: 10.1056/NEJMoa1708566.

25. Santomasso B.D., Nastoupil L.J., Adkins S., et al. Management of immunerelated adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992.

26. Murthy H., Iqbal M., Chavez J.C., Kharfan-Dabaja M.A. Cytokine release syndrome: current perspectives. Immunotargets Ther. 2019;8:43–52. DOI: 10.2147/ITT.S202015.

27. Sterner R.M., Sakemura R., Cox M.J., et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinfl ammation but enhances CAR T cell function in xenografts. Blood. 2019;133(7):697–709. DOI: 10.1182/blood-2018-10-881722.

28. Maude S.L., Barrett D., Teachey D.T., Grupp S.A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22. DOI: 10.1097/PPO.0000000000000035.

29. Flierl M.A., Rittirsch D., Nadeau B.A., et al. Phagocyte-derived catecholamines enhance acute infl ammatory injury. Nature. 2007;449(7163):721–5. DOI: 10.1038/nature06185.

30. Wei J., Liu Y., Wang C., et al. The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduct Target Ther. 2020;5(1):134. DOI: 10.1038/s41392-020-00256-x.

31. Morris E.C., Neelapu S.S., Giavridis T., Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22(2):85–96. DOI: 10.1038/s41577-021-00547-6.

32. Hao Z., Li R., Meng L., et al. Macrophage, the potential key mediator in CAR T related CRS. Exp Hematol Oncol. 2020;9:15. DOI: 10.1186/s40164-02000171-5.

33. Giavridis T., van der Stegen S.J.C., Eyquem J., et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. DOI: 10.1038/s41591-018-0041-7.

34. Norelli M., Camisa B., Barbiera G., et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48. DOI: 10.1038/s41591-018-0036-4.

35. van der Stegen S.J., Davies D.M., Wilkie S., et al. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? J Immunol. 2013;191(9):4589–98. DOI: 10.4049/jimmunol.1301523.

36. Chen X., Kamperschroer C., Wong G., Xuan D. A modeling framework to characterize cytokine release upon T-cell-engaging bispecifi c antibody treatment: methodology and opportunities. Clin Transl Sci. 2019;12(6):600–8. DOI: 10.1111/cts.12662.

37. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–4. DOI: 10.1126/science.abb8925.

38. Tvedt T.H.A., Vo A.K., Bruserud Ø., Reikvam H. Cytokine release syndrome in the immunotherapy of hematological malignancies: the biology behind and possible clinical consequences. J Clin Med. 2021;10(21):5190. DOI: 10.3390/jcm10215190.

39. Folco E.J., Mawson T.L., Vromman A., et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018;38(8):1901–12. DOI: 10.1161/ATVBAHA.118.311150.

40. Yoon J.G., Smith D.A., Tirumani S.H., et al. CAR T-Cell Therapy: An Update for Radiologists. AJR Am J Roentgenol. 2021;217(6):1461–74. DOI: 10.2214/AJR.21.26091.

41. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. DOI: 10.1186/s40425-0180343-9.

42. Sun K, Wang W, Gao L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science. 2020;371:eabe2424. DOI: 10.1126/science.abe2424.

43. Maude S.L., Laetsch T.W., Buechner J., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439– 48. DOI: 10.1056/NEJMoa1709866.

44. Neelapu S.S., Locke F.L., Bartlett N.L., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. DOI: 10.1056/NEJMoa1707447.

45. Shah B.D., Bishop M.R., Oluwole O.O., et al. KTE-X19 anti-CD19 CAR Tcell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood. 2021;138(1):11–22. DOI: 10.1182/blood.2020009098.

46. Maschan M., Caimi P.F., Reese-Koc J. et al. Multiple site place-of-care manufactured anti-CD19 CAR T cells induce high remission rates in B-cell malignancy patients. Nat Commun. 2021;12:7200. DOI: 10.1038/s41467-021-27312-6.

47. Roddie C., Sandhu K.S., Tholouli E., et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N Engl J Med. 2024;391(23):2219– 30. DOI: 10.1056/NEJMoa2406526.

48. Li M., Xue S.L., Tang X., et al. The differential effects of tumor burdens on predicting the net benefi ts of SSCART-19 cell treatment on R/R B-ALL patients. Sci Rep. 2022;12(1):378. DOI: 10.1038/s41598-021-04296-3.

49. Teachey D.T., Lacey S.F., Shaw P.A., et al. Identifi cation of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79. DOI: 10.1158/2159-8290.CD-16-0040.

50. Sheth V.S., Gauthier J. Taming the beast: CRS and ICANS after CAR T-cell therapy for all. Bone Marrow Transplant. 2021;56(3):552–66. DOI: 10.1038/s41409-020-01080-8.

51. Yan Z., Zhang H., Cao J., et al. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 2021;12:611366. DOI: 10.3389/fimmu.2021.611366.

52. Sureda A., Corbacioglu S., Greco R., et al. Eds. The EBMT Handbook: Hematopoietic Cell Transplantation and Cellular Therapies. 8th ed. Cham (CH): Springer; 2024. PMID: 39437029.

53. Diorio C., Shaw P.A., Pequignot E., et al. Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Adv. 2020;4(20):5174–83. DOI: 10.1182/bloodadvances.2020002592.

54. Powell M.Z., Mara K.C., Bansal R., et al. Procalcitonin as a biomarker for predicting bacterial infection in chimeric antigen receptor T-cell therapy recipients. Cancer Med. 2023;12(8):9228–35. DOI: 10.1002/cam4.5665.

55. Schuster S.J., Maziarz R.T., Rusch E.S., et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9. DOI: 10.1182/bloodadvances.2019001304.

56. Rubin D.B., Al Jarrah A., Li K., et al. Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy. JAMA Neurol. 2020;77(12):1536–42. DOI: 10.1001/jamaneurol.2020.2816.

57. Curran K.J., Margossian S.P., Kernan N.A., et al. Toxicity and response after CD19-specifi c CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–8. DOI: 10.1182/blood.2019001641.

58. Santomasso B.D., Park J.H., Salloum D., et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with Bcell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71. DOI: 10.1158/2159-8290.CD-17-1319.

59. Gust J., Hay K.A., Hanafi L.A., et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR T cells. Cancer Discov. 2017;7(12):1404–19. DOI: 10.1158/2159-8290.CD-17-0698.

60. Grant S.J., Grimshaw A.A., Silberstein J., et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022;28(6):294–302. DOI: 10.1016/j.jtct.2022.03.006.

61. Pennisi M., Jain T., Santomasso B.D., et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4(4):676–86. DOI: 10.1182/bloodadvances.2019000952.

62. Herr M.M., Chen G.L., Ross M., et al. Identifi cation of neurotoxicity after chimeric antigen receptor (CAR) T cell infusion without deterioration in the immune effector cell encephalopathy (ICE) score. Biol Blood Marrow Transplant. 2020;26(11):e271–4. DOI: 10.1016/j.bbmt.2020.07.031.

63. Möhn N., Bonda V., Grote-Levi L., et al. Neurological management and work-up of neurotoxicity associated with CAR T cell therapy. Neurol Res Pract. 2022;4(1):1. DOI: 10.1186/s42466-021-00166-5.

64. Cohen A.D., Parekh S., Santomasso B.D., et al. Incidence and management of CAR T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 2022;12:32. DOI: 10.1038/s41408-022-00629-1.

65. Van Oekelen O., Aleman A., Upadhyaya B., et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR T cell therapy. Nat Med. 2021;27(12):2099–103. DOI: 10.1038/s41591021-01564-7.

66. Koch C., Fleischer J., Popov T., et al. Diabetes insipidus and Guillain-Barrélike syndrome following CAR T cell therapy: a case report. J Immunother Cancer. 2023;11(1):e006059. DOI: 10.1136/jitc-2022-006059.

67. Gabay C., Emery P., van Vollenhoven R., et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381(9877):1541– 50. DOI: 10.1016/S0140-6736(13)60250-0.

68. Bijlsma J.W.J., Welsing P.M.J., Woodworth T.G., et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388(10042):343–55. DOI: 10.1016/S0140-6736(16)30363-4.

69. Le R.Q., Li L., Yuan W., et al. FDA approval summary: Tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7. DOI: 10.1634/theoncologist.2018-0028.

70. Tolstykh D.A., Tsukur A.A., Lomkova E.A., et al. Vodnaya farmatsevticheskaya kompozitsiya levilimaba i ee primenenie [Aqueous pharmaceutical composition of levilimab and its use]. Patent RF No. 2745814 C1; ZAO “BIOKAD” (patentoobladatel’). Zayavl. 05.06.2020; Opubl. 01.04.2021, Byul. No. 10.

71. Schuster S.J., Maziarz R.T., Rusch E.S., et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4(7):1432–9. DOI: 10.1182/bloodadvances.2019001304.

72. Strati P., Ahmed S., Furqan F., et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. DOI: 10.1182/blood.2020008865.

73. Nellan A., McCully C.M.L., Cruz Garcia R., et al. Improved CNS exposure to tocilizumab after cerebrospinal fl uid compared to intravenous administration in rhesus macaques. Blood. 2018;132(6):662–6. DOI: 10.1182/blood-2018-05-846428.

74. Balis F.M., Lester C.M., Chrousos G.P., et al. Differences in cerebrospinal fl uid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):202–7. DOI: 10.1200/JCO.1987.5.2.202.

75. Labar B., Suciu S., Willemze R., et al. Dexamethasone compared to prednisolone for adults with acute lymphoblastic leukemia or lymphoblastic lymphoma: fi nal results of the ALL-4 randomized, phase III trial of the EORTC Leukemia Group. Haematologica. 2010;95(9):1489–95. DOI: 10.3324/haematol.2009.018580.

76. Gardner R.A., Ceppi F., Rivers J., et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–58. DOI: 10.1182/blood.2019001463.

77. Hines M.R., Knight T.E., McNerney K.O., et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transplant Cell Ther. 2023;29(7):438.e1–e16. DOI: 10.1016/j.jtct.2023.03.006.

78. Chen F., Teachey D.T., Pequignot E., et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods. 2016;434:1–8. DOI: 10.1016/j.jim.2016.03.005.

79. Titov A., Petukhov A., Staliarova A., et al. The biological basis and clinical symptoms of CAR T therapy-associated toxicities. Cell Death Dis. 2018;9(9):897. DOI: 10.1038/s41419-018-0918-x.

80. Zhang L., Wang S., Xu J., Zhang R., et al. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol. 2021;10(1):16. DOI: 10.1186/s40164-021-00209-2.

81. Strati P., Ahmed S., Kebriaei P., et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4(13):3123–7. DOI: 10.1182/bloodadvances.2020002328.

82. Бровко М.Ю., Новиков П.И., Набатчикова Е.А. и др. Сравнительная эффективность олокизумаба и тоцилизумаба в лечении COVID-19 у госпитализированных больных. Клиническая фармакология и терапия 2022;31(3):9–15. DOI: 10.32756/0869-5490-2022-3-9-15.

83. Park J.H., Nath K., Devlin S.M., et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat Med. 2023;29(7):1710–7. DOI: 10.1038/s41591-023-02404-6.

84. Frigault M.J., Yao E., Berger T.R., et al. Single-cell dynamics of breakthrough toxicities following anakinra prophylaxis for axicabtagene ciloleucel in lymphoma. Blood Adv. 2025;9(9):2122–35. DOI: 10.1182/bloodadvances.2024015161.

85. Shi Y., Liu C.H., Roberts A.I., et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–33. DOI: 10.1038/sj.cr.7310017.

86. Yi Y., Chai X., Zheng L., et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 2021;7(1):27. DOI: 10.1038/s41421-021-00255-4.

87. Kenderian S.S., Oluwole O.O., McCarthy P.L., et al. ZUMA-19: A phase 1/2 multicenter study of lenzilumab use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed or refractory large B cell lymphoma (R/R LBCL). Blood. 2020;136(Suppl 1):6–7.

88. Banerjee R., Marsal J., Huang C.Y., et al. Early time-to-tocilizumab after B cell maturation antigen-directed chimeric antigen receptor T cell therapy in myeloma. Transplant Cell Ther. 2021;27(6):477.e1–e7. DOI: 10.1016/j.jtct.2021.03.004.

89. Penack O., Peczynski C., Boreland W., et al. Management of complications of chimeric antigen receptor T-cell therapy: a report by the European Society of Blood and Marrow Transplantation. Haematologica. 2024;109(11):3557–65. DOI: 10.3324/haematol.2023.284810.

90. McNerney K.O., Si Lim S.J., Ishikawa K., et al. HLH-like toxicities predict poor survival after the use of tisagenlecleucel in children and young adults with B-ALL. Blood Adv. 2023;7(12):2758–71. DOI: 10.1182/bloodadvances.2022008893.

91. Lichtenstein D.A., Schischlik F., Shao L., et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood. 2021;138(24):2469–84. DOI: 10.1182/blood.2021011898.

92. Sandler R.D., Tattersall R.S., Schoemans H., et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR T cell therapy in adults; a review of the literature and a survey of practice within EBMT centres. Front Immunol. 2020;11:524. DOI: 10.3389/fimmu.2020.00524.

93. Diorio C., Vatsayan A., Talleur A.C., et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 2022;6(11):3398–403. DOI: 10.1182/bloodadvances.2022006983.

94. Cai W., Lu Y., He H., et al. Efficacy of emapalumab in the management of anti-CD19 chimeric antigen receptor T cell therapy associated cytokine release syndrome: A report of two cases. Oncol Lett. 2024;29(2):71. DOI: 10.3892/ol.2024.14817.

95. Baldo F., Erkens R.G.A., Mizuta M., et al. Current treatment in macrophage activation syndrome worldwide: a systematic literature review to inform the METAPHOR project. Rheumatology (Oxford). 2025;64(1):32–44. DOI: 10.1093/rheumatology/keae391.

96. Zhang Q., Zhao Y.Z., Ma H.H., et al. A study of ruxolitinib response-based stratifi ed treatment for pediatric hemophagocytic lymphohistiocytosis. Blood. 2022;139(24):3493–504. DOI: 10.1182/blood.2021014860.

97. Myachikova V.Yu., Maslyanskiy A.L., Moiseeva O.M. Idiopathic recurrent pericarditis — a new orphan autoinfl ammatory disease? A retrospective analysis of cases of idiopathic recurrent pericarditis and a design of a double-blind, randomized, placebo-controlled study to evaluate the efficacy and safety of RPH-104 treatment in patients with idiopathic recurrent pericarditis. Kardiologiia. 2021;61(1):72–7. DOI: 10.18087/cardio.2021.1.n1475.

98. Samsonov M., Bogin V., Van Tassell B.W., Abbate A. Interleukin-1 blockade with RPH-104 in patients with acute ST-elevation myocardial infarction: study design and rationale. J Transl Med. 2021;19:169. DOI: 10.1186/s12967-02102828-z.

99. Krotkova A., Shipaeva E., Luetjens C.M., et al. Toxicity and Pharmacokinetics of novel IL-1 Trap heterodimeric fusion protein. Toxicol Lett. 2015;238(2):S311. ISSN 0378-4274. DOI: 10.1016/j.toxlet.2015.08.889


Review

For citations:


Lepik K.V., Dergacheva T.Yu., Popova M.O., Andrianov A.N., Samsonov M.Yu., Moiseev I.S. Cytokine release syndrome following chimeric antigen receptor T-cell therapy: Pathophysiology, clinical manifestations, and novel therapeutic approaches. Russian journal of hematology and transfusiology. 2025;70(2):229-244. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-2-229-244

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)