Preview

Russian journal of hematology and transfusiology

Advanced search

Cytotoxic immune cell-derived agents in hematologic neoplasms: Pre-transplant remission induction

https://doi.org/10.35754/0234-5730-2025-70-2-245-251

Abstract

Introduction. Traditional methods of pre-transplant conditioning provoke acute organ damage. Immunotherapeutic drugs that target various markers of blood cells are safer. This potential is possessed by drugs based on cytotoxic immune cells. Their use may concurrently address two treatment objectives — residual tumor clearance (induction of remission) and myeloablation — consequently improving graft acceptance while preventing graft-versus-host disease development.

Aim: to systematize information on the use of cell therapy in patients with hematologic malignancies and to evaluate the role of such therapy in preparing patients for hematopoietic stem cell transplantation (HSCT).

Main findings. Current conditioning regimens and their rationale were reviewed. Approaches to the use of immunotherapeutic agents based on cytotoxic immune cells for the treatment of patients with hematologic neoplasms are discussed, and the role of such therapy in preparing patients for HSCT is outlined.

About the Authors

D. V. Volkov
Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Dmitry V. Volkov*, Cand. Sci. (Biol.), Research associate, Biocatalysis Laboratory.

117997, Moscow



A. G. Gabibov
Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexander G. Gabibov - Dr. Sci. (Chem.), Academician of the Russian Academy of Sciences, Professor of the Russian Academy of Sciences, Head of Biocatalysis Laboratory.

117997, Moscow



References

1. Tuthill M., Hatzimichael E. Hematopoietic stem cell transplantation. Stem Cells Cloning. 2010;3:105. DOI: 10.2147/sccaa.s6815.

2. Rafiee M., Abbasi M., Rafieemehr H., et al. A concise review on factors influencing the hematopoietic stem cell transplantation main outcomes. Health Sci Rep. 2021;2:e282. DOI: 10.1002/hsr2.282.

3. Pinho S., Frenette P.S. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;5:303–20. DOI: 10.1038/s41580-019-0103-9.

4. Wei Q., Frenette P.S. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;4:632–48. DOI: 10.1016/j.immuni.2018.03.024.

5. Ugarte F., Forsberg E.C. Haematopoietic stem cell niches: new insights inspire new questions. EMBO J. 2013;19:2535–47. DOI: 10.1038/emboj.2013.201.

6. Hérault A., Binnewies M., Leong S., et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;7648:53–8. DOI: 10.1038/nature21693.

7. Niederkorn M., Starczynowski D.T. GMP-ing to spatial conclusions about emergency and leukemic myelopoiesis. Cell Stem Cell. 2017;5:579–81. DOI: 10.1016/j.stem.2017.04.005.

8. Vriesendorp H.M. Aims of conditioning. Exp Hematol. 2003;10:844–54. DOI: 10.1016/s0301-472x(03)00229-7.

9. Bouchlaka M.N., Redelman D., Murphy W.J. Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy. 2010;3:399–418. DOI: 10.2217/imt.10.20.

10. Chang Y.-J., Zhao X.-Y., Huang X.-J. Strategies for enhancing and preserving anti-leukemia effects without aggravating graft-versus-host disease. Front Immunol. 2018;3041. DOI: 10.3389/fimmu.2018.03041.

11. Gyurkocza B., Sandmaier B.M. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;3:344–53. DOI: 10.1182/blood-2014-02-514778.

12. Deeg H.J., Sandmaier B.M. Who is fit for allogeneic transplantation? Blood. 2010;23:4762–70. DOI: 10.1182/blood-2010-07-259358.

13. Ebens C.L., MacMillan M.L., Wagner J.E. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol. 2017;1:81–97. DOI: 10.1080/17474086.2016.1268048.

14. Giardino S., de Latour R.P., Aljurf M., et al. Outcome of patients with Fanconi anemia developing myelodysplasia and acute leukemia who received allogeneic hematopoietic stem cell transplantation: A retrospective analysis on behalf of EBMT group. Am J Hematol. 2020;7:809–16. DOI: 10.1002/ajh.25810.

15. Rialland F., Grain A., Labopin M., et al. Reduced-toxicity myeloablative conditioning regimen using fludarabine and full doses of intravenous busulfan in pediatric patients not eligible for standard myeloablative conditioning regimens: Results of a multicenter prospective phase 2 trial. Bone Marrow Transplant. 2022;11:1698–703. DOI: 10.1038/s41409-022-01769-5.

16. Brammer J.E., Stentz A., Gajewski J., et al. Nonmyeloablative allogeneic hematopoietic stem cell transplant for the treatment of patients with hematologic malignancies using busulfan, fludarabine, and total body irradiation conditioning is effective in an elderly and infirm population. Biol Blood Marrow Transplant. 2015;1:89–96. DOI: 10.1016/j.bbmt.2014.09.024.

17. Atilla E., Ataca Atilla P., Demirer T. A review of myeloablative vs reduced intensity/non-myeloablative regimens in allogeneic hematopoietic stem cell transplantations. Balkan Med J. 2017;1:1–9. DOI: 10.4274/balkanmedj.2017.0055.

18. Slatter M.A., Rao K., Abd Hamid I.J., et al. Treosulfan and fludarabine conditioning for hematopoietic stem cell transplantation in children with primary immunodeficiency: UK experience. Biol Blood Marrow Transplant. 2018;3:529–36. DOI: 10.1016/j.bbmt.2017.11.009.

19. Law J., Cowan M.J., Dvorak C.C., et al. Busulfan, fludarabine, and alemtuzumab as a reduced toxicity regimen for children with malignant and nonmalignant diseases improves engraftment and graft-versus-host disease without delaying immune reconstitution. Biol Blood Marrow Transplant. 2012;11:1656–63. DOI: 10.1016/j.bbmt.2012.05.006.

20. Jagadeesh D., Majhail N.S., He Y., et al. Outcomes of rituximab-BEAM versus BEAM conditioning regimen in patients with diffuse large B cell lymphoma undergoing autologous transplantation. Cancer. 2020;10:2279–87. DOI: 10.1002/cncr.32752.

21. Epperla N., Ahn K.W., Ahmed S., et al. Rituximab-containing reduced-intensity conditioning improves progression-free survival following allogeneic transplantation in B cell non-Hodgkin lymphoma. J Hematol Oncol. 2017;1:??? DOI: 10.1186/s13045-017-0487-y.

22. Chen Y.-B., Shah N.N., Renteria A.S., et al. Vedolizumab for prevention of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019;23:4136–46. DOI: 10.1182/bloodadvances.2019000893.

23. Marjon K.D., Chen J.Y., Duan J., et al. An all antibody approach for conditioning bone marrow for Hematopoietic stem cell transplantation with anti-cKIT and anti-CD47 in non-human primates. Blood. 2019;Supplement_1:4428. DOI: 10.1182/blood-2019-131490.

24. Kwon H.-S., Logan A.C., Chhabra A., et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood. 2019;19:2104–8. DOI: 10.1182/blood-2018-06-853879.

25. Chhabra A., Ring A.M., Weiskopf K., et al. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med. 2016;351:351ra105. DOI: 10.1126/scitranslmed.aae0501.

26. George B.M., Kao K.S., Kwon H.-S., et al. Antibody conditioning enables MHC-mismatched hematopoietic stem cell transplants and organ graft tolerance. Cell Stem Cell. 2019;2:185–92.e3. DOI: 10.1016/j.stem.2019.05.018.

27. Palchaudhuri R., Saez B., Hoggatt J., et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol. 2016;7:738–45. DOI: 10.1038/nbt.3584.

28. Li Z., Czechowicz A., Scheck A., et al. Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drugconjugate conditioning in MHC-mismatched allotransplantation. Nat Commun. 2019;1:616. DOI: 10.1038/s41467-018-08202-w.

29. Wadleigh M., Richardson P.G., Zahrieh D., et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003;5:1578–82. DOI: 10.1182/blood-2003-01-0255.

30. Abadir E., Silveira P.A., Gasiorowski R.E., et al. Targeting CD300f to enhance hematopoietic stem cell transplantation in acute myeloid leukemia. Blood Adv. 2020;7:1206–16. DOI: 10.1182/bloodadvances.2019001289.

31. Krishnan A., Palmer J.M., Tsai N.-C., et al. Matched-cohort analysis of autologous hematopoietic cell transplantation with radioimmunotherapy versus total body irradiation-based conditioning for poor-risk diffuse large cell lymphoma. Biol Blood Marrow Transplant. 2012;3:441–50. DOI: 10.1016/j.bbmt.2011.07.016.

32. Arai Y., Choi U., Corsino C.I., et al. Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment. Mol Ther. 2018;5:1181–97. DOI: 10.1016/j.ymthe.2018.03.003.

33. Myburgh R., Kiefer J.D., Russkamp N.F., et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia. 2020;10:2688–703. DOI: 10.1038/s41375-020-0818-9.

34. Gill S., Tasian S.K., Ruella M., et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;15:2343–54. DOI: 10.1182/blood-2013-09-529537.

35. Baroni M.L., Sanchez Martinez D., Gutierrez Aguera F., et al. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer. 2020;1:e000845. DOI: 10.1136/jitc-2020-000845.

36. Dahlke M.H., Larsen S.R., Rasko J.E.J., et al. The biology of CD45 and its use as a therapeutic target. Leuk Lymphoma. 2004;2:229–36. DOI: 10.1080/1042819031000151932.

37. Stepanova V.M., Volkov D.V., Osipova D.S., et al. Targeting CD45 by geneedited CAR T cells for leukemia eradication and hematopoietic stem cell transplantation preconditioning. Molecular Therapy: Oncology. 2024;3:200843. DOI: 10.1016/j.omton.2024.200843.

38. Hermiston M.L., Xu Z., Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;1:107–37. DOI: 10.1146/annurev. immunol.21.120601.140946.

39. Volkov D.V., Stepanova V.M., Rubtsov Y.P., et al. Protein tyrosine phosphatase CD45 as an immunity regulator and a potential effector of CAR-T therapy. Acta Naturae. 2023;3:17–26. DOI: 10.32607/actanaturae.25438.

40. Wellhausen N., O’Connell R.P., Lesch S., et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med. 2023;714:eadi1145. DOI: 10.1126/scitranslmed.adi1145.

41. Harfmann M., Schröder T., Głów D., et al. CD45-directed CAR-T cells with CD45 knockout efficiently kill myeloid leukemia and lymphoma cells in vitro even after extended culture. Cancers (Basel). 2024;2:??? DOI: 10.3390/cancers16020334.

42. Tian Z., Liu M., Zhang Y., et al. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;1:75. DOI: 10.1186/s13045-021-01084-4.

43. Arruda L.C.M., Jin L., Lambert M., et al. A novel CD34-specific T-cell engager efficiently depletes stem cells and Acute myeloid leukemia cells in vitro and in vivo. Blood. 2021;Supplement 1:2861. DOI: 10.1182/blood-2021-145278.

44. Kiefer J.D., Myburgh R., Russkamp N.F., et al. A bispecific antibody targeting CD117 and CD3 enables T cell mediated killing of CD117-expressing healthy and malignant hematopoietic cells. Blood. 2021;Supplement 1:2354. DOI: 10.1182/blood-2021-147676.

45. Sirochinsky C., Liang R., Shrestha E., et al. FLT3-CD3 bispecific antibody specifically eliminates normal hematopoietic progenitors and AML in humanized mouse models. Blood. 2020;Supplement 1:20–1. DOI: 10.1182/blood-2020-142709.


Review

For citations:


Volkov D.V., Gabibov A.G. Cytotoxic immune cell-derived agents in hematologic neoplasms: Pre-transplant remission induction. Russian journal of hematology and transfusiology. 2025;70(2):245-251. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-2-245-251

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)