Preview

Russian journal of hematology and transfusiology

Advanced search

Cell free DNA in patient with aggressive mature cell B-cell lymphomas and Hodgkin’s lymphoma (literature review)

https://doi.org/10.35754/0234-5730-2025-70-3-383-395

Abstract

Introduction. Cell free DNA (cfDNA), being an easily accessible and promising clinical material, as previously shown in obstetrics and general oncology, is of particular interest in hematology. In recent years, the study of plasma cfDNA in hematological diseases has been gaining increasing interest among researchers and physicians. To date, a signifi cant amount of data cfDNA and tumor cfDNA (cftDNA) in patients with diseases of the blood system has been accumulated in the world literature.

Aim: to study the literature data on the cfDNA in aggressive B-cell lymphomas and Hodgkin’s lymphoma (HL).

Main fi ndings. The review presents the literature data on the study of cfDNA, the possibilities and limitations of using various methods of studying cfDNA in patients with aggressive B-cell lymphomas and HL.

About the Authors

S. Yu. Smirnova
National Medical Research Center for Hematology
Russian Federation

Svetlana Yu. Smirnova, Cand. Sci. (Med.), hematologist of the clinical diagnostic department of hematology and chemotherapy with a day hospital; Researcher, Laboratory of Molecular Hematology

125167, Moscow



E. E. Nikulina
National Medical Research Center for Hematology
Russian Federation

Elena E. Nikulina, Researcher, Laboratory of Molecular Hematology

125167, Moscow



A. B. Sudarikov
National Medical Research Center for Hematology
Russian Federation

Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Genetics

125167, Moscow



References

1. Mandel P., Métais P. Les acides nucléiques du plasma sanguin chez l’homme [The nucleic acids of blood plasma in humans]. C R Seances Soc Biol Fil. 1948;142(3–4):241–3 (In French).

2. Leon S.A., Shapiro B., Sklaroff D.M., Yaros M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

3. Frickhofen N., Müller E., Sandherr M., et al. Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood. 1997;90(12):4953–60.

4. Siravegna G., Mussolin B., Venesio T., et al. How liquid biopsies can change clinical practice in oncology. Ann Oncol. 2019;30(10):1580–90. DOI: 10.1093/annonc/mdz227.

5. Anker P., Lyautey J., Lederrey C., Stroun M. Circulating nucleic acids in plasma or serum. Clin Chim Acta. 2001;313(1-2):143–6. DOI: 10.1016/s0009-8981(01)00666-0.

6. Breitbach S., Tug S., Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42(7):565–86. DOI: 10.2165/11631380-000000000-00000.

7. Rhodes A., Cecconi M. Cell-free DNA and outcome in sepsis. Crit Care. 2012;16(6):170. DOI: 10.1186/cc11508.

8. Anker P., Stroun M. Immunological aspects of circulating DNA. Ann N Y Acad Sci. 2006;1075:34–9. DOI: 10.1196/annals.1368.004.

9. Swerdlow S.H., Steven H., Campo E., et al., eds. WHO Classifi cation of Tumours of Haematopoietic and Lymphoid Tissues. Cham (CH): International Agency for Research on Cancer; 2017. 417 p.

10. Lister T.A., Crowther D., Sutcliffe S.B., et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6. DOI: 10.1200/JCO.1989.7.11.1630.

11. Cheson B.D., Pfi stner B., Juweid M.E., et al., International Harmonization Project on Lymphoma. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. DOI: 10.1200/JCO.2006.09.2403.

12. Eichenauer D.A., Aleman B.M.P., André M., et al., ESMO Guidelines Committee. Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):19–29. DOI: 10.1093/annonc/mdy080.

13. Cwynarski K., Marzolini M.A.V, Barrington S.F, et al. The management of primary mediastinal B-cell lymphoma: a British Society for Haematology Good Practice Paper. Br J Haematol. 2019;185(3):402–9. DOI: 10.1111/bjh.15731.

14. Brink I., Reinhardt M.J., Hoegerle S., et al. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42(4):591–5.

15. Cohen J.B., Behera M., Thompson C.A., Flowers C.R. Evaluating surveillance imaging for diffuse large B-cell lymphoma and Hodgkin lymphoma. Blood. 2017;129(5):561–4. DOI: 10.1182/blood-2016-08-685073.

16. Makis W., Derbekyan V., Hickeson M. Primary mediastinal large B-cell lymphoma (thymic lymphoma) imaged with F-18 FDG PET-CT. Clin Nucl Med. 2010;35(6):421–4. DOI: 10.1097/RLU.0b013e3181db4d33.

17. Chien S.H., Liu C.J., Hu Y.W., et al. Frequency of surveillance computed tomography in non-Hodgkin lymphoma and the risk of secondary primary malignancies: A nationwide population-based study. Int J Cancer. 2015;137(3):658– 65. DOI: 10.1002/ijc.29433.

18. Thompson C.A., Charlson M.E., Schenkein E., et al. Surveillance CT scans are a source of anxiety and fear of recurrence in long-term lymphoma survivors. Ann Oncol. 2010;21(11):2262–6. DOI: 10.1093/annonc/mdq215.

19. Scherer F., Kurtz D.M., Newman A.M., et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155. DOI: 10.1126/scitranslmed.aai8545.

20. Rossi D., Diop F., Spaccarotella E., et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood. 2017;129(14):1947–57. DOI: 10.1182/blood-2016-05-719641.

21. Soloveva M., Solovev M., Nikulina E., et al. Loss of Heterozygosity in the Circulating Tumor DNA and CD138+ Bone Marrow Cells in Multiple Myeloma. Genes. 2023;14(2):351. DOI: 10.3390/genes14020351.

22. Smirnova S.Yu., Nikulina E.E., Gabeeva N.G., et al. Plasma Cell-Free DNA in Patients with Diffuse Large B-Cell and B-Cell High-Grade (Double Hit/Triple Hit) Lymphomas. Klinicheskaya onkogematologiya. 2023;16(2):200–8 (In Russian). DOI: 10.21320/2500-2139-2023-16-2-200-208.

23. Gabeeva N.G., Koroleva D.A., Tatarnikova S.A., et al. Interim results of the PML-16, PML-19 protocols for primary mediastinal large B-cell lymphoma therapy. Gematologiya i Transfuziologiya. 2022;67(3):328–50 (In Russian). DOI: 10.35754/0234-5730-2022-67-3-328-350.

24. Smirnova S.Yu., Nikulina E.E., Ryzhikova N.V., et al. Free circulating plasma DNA in patients with primary mediastinal lymphoma. Gematologiya i Transfusiologiya. 2020;65(S1):102–3 (In Russian).

25. Nikulina E.E., Risinskaya N.V., Smirnova S.Yu., et al. Tumor markers in circulating cfDNA in patients with hemoblastoses. Gematologiya i Transfusiologiya. 2022;67(S2):62–3 (In Russian).

26. Soloveva M., Solovev M., Risinskaya N., et al. Loss of Heterozygosity and Mutations in the RAS-ERK Pathway Genes in Tumor Cells of Various Loci in Multiple Myeloma. Int J Mol Sci. 2024;25(17):9426. DOI: 10.3390/ijms25179426.

27. Fontanilles M., Marguet F., Bohers É., et al. Non-invasive detection of somatic mutations using next-generation sequencing in primary central nervous system lymphoma. Oncotarget. 2017;8(29):48157–68. DOI: 10.18632/oncotarget.18325.

28. Roschewski M., Dunleavy K., Pittaluga S., et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9. DOI: 10.1016/S1470-2045(15)70106-3.

29. Kurtz D.M., Scherer F., Jin M.C., et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2018;36(28):2845–53. DOI: 10.1200/JCO.2018.78.5246.

30. Herrera A.F., Tracy S., Croft B., et al. Risk profi ling of patients with relapsed/ refractory diffuse large B-cell lymphoma by measuring circulating tumor DNA. Blood Adv. 2022;6(6):1651–60. DOI: 10.1182/bloodadvances.2021006415.

31. Distler A., Lakhotia R., Phelan J.D., et al. A prospective study of clonal evolution in follicular lymphoma: circulating tumor DNA correlates with overall tumor burden and fl uctuates over time without therapy. Blood. 2021;138(Suppl 1):1328. DOI: 10.1182/blood-2021-151096.

32. Sarkozy C., Huet S., Carlton V.E., et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget. 2017;8(5):8765– 74. DOI: 10.18632/oncotarget.14448.

33. Delfau-Larue M.H., van der Gucht A., Dupuis J., et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv. 2018;2:807–16. DOI: 10.1182/bloodadvances.2017015164.

34. Lakhotia R., Melani C., Dunleavy K., et al. Circulating tumor DNA predicts therapeutic outcome in mantle cell lymphoma. Blood Adv. 2022;6:2667–80. DOI: 10.1182/bloodadvances.2021006397.

35. Camus V., Stamatoullas A., Mareschal S., et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016;101(9):1094– 101. DOI: 10.3324/haematol.2016.145102.

36. Primerano S., Burnelli R., Carraro E., et al. Kinetics of circulating plasma cellfree DNA in paediatric classical Hodgkin lymphoma. J Cancer. 2016;7(4):364– 6. DOI: 10.7150/jca.13593.

37. Vandenberghe P., Wlodarska I., Tousseyn T., et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol. 2015;2(2):e55–65. DOI: 10.1016/S2352-3026(14)00039-8.

38. Spina V., Bruscaggin A., Cuccaro A., et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131:2413–25. DOI: 10.1182/blood-2017-11-812073.

39. Zhang W., Wang W., Han X., et al. Circulating tumor DNA by high-throughput sequencing of T cell receptor monitored treatment response and predicted treatment failure in T cell lymphomas. Int J Lab Hematol. 2021;43:1041–9. DOI: 10.1111/ijlh.13498.

40. Miljkovic M.D., Melani C., Pittaluga S., et al. Next-generation sequencingbased monitoring of circulating tumor DNA reveals clonotypic heterogeneity in untreated PTCL. Blood Adv. 2021;5:4198–210. DOI: 10.1182/bloodadvances.2020003679.

41. Pfreundschuh M., Kuhnt E., Trümper L., et al., MabThera International Trial (MInT) Group. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12(11):1013–22. DOI: 10.1016/S1470-2045(11)70235-2.

42. Reddy A., Zhang J., Davis N.S., et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94.e15. DOI: 10.1016/j.cell.2017.09.027.

43. Chapuy B., Stewart C., Dunford A.J., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24:679–90. DOI: 10.1038/s41591-018-0016-8.

44. Schmitz R., Wright G.W., Huang D.W., et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407. DOI: 10.1056/NEJMoa1801445.

45. Bohers E., Viailly P.J., Dubois S., et al. Somatic mutations of cell-free circulating DNA detected by next-generation sequencing refl ect the genetic changes in both germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphomas at the time of diagnosis. Haematologica. 2015;100(7):e280–4. DOI: 10.3324/haematol.2015.123612.

46. Kurtz D.M., Green M.R., Bratman S.V., et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125(24):3679–87. DOI: 10.1182/blood-2015-03-635169.

47. Li M., Xu C. Circulating cell-free DNA utility for the surveillance of patients with treated diffuse large B-cell lymphoma. Clin Oncol (R Coll Radiol). 2017;29(9):637–8. DOI: 10.1016/j.clon.2017.03.008.

48. Herrera A.F., Kim H.T., Kong K.A., et al. Next-generation sequencing-based detection of circulating tumour DNA after allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016;175(5):841–50. DOI: 10.1111/bjh.14311.

49. Kumar A., Westin J., Schuster S.J., et al. Interim Analysis from a Prospective Multicenter Study of Next-Generation Sequencing Minimal Residual Disease Assessment and CT Monitoring for Surveillance after Frontline Treatment in Diffuse Large B-Cell Lymphoma. Blood. 2020;136(Suppl 1):46–7. DOI: 10.1182/blood-2020-138889.

50. Frank M.J., Hossain N.M., Bukhari A., et al. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-Cell lymphoma: results of a prospective multiinstitutional trial. J Clin Oncol. 2021;39(27):3034–43. DOI: 10.1200/JCO.21.00377.

51. Bohers E., Viailly P.J., Becker S., et al. Noninvasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J. 2018;8(8):74. DOI: 10.1038/s41408-018-0111-6.

52. Meriranta L., Alkodsi A., Pasanen A., et al. Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma. Blood. 2022;139(12):1863–77. DOI: 10.1182/blood.2021012852.

53. Rivas-Delgado A., Nadeu F., Enjuanes A., et al. Mutational landscape and tumor burden assessed by cell-free DNA in diffuse large B-cell lymphoma in a popu lation-based study. Clin Cancer Res. 2021;27:513–21. DOI: 10.1158/1078-0432.CCR-20-2558.

54. Alig S., Macaulay C.W., Kurtz D.M., et al. Short diagnosis-to-treatment interval is associated with higher circulating tumor DNA levels in diffuse large B-cell lymphoma. J Clin Oncol. 2021;39:2605–16. DOI: 10.1200/JCO.20.02573.

55. Merryman R.W., Redd R.A., Taranto E., et al. Prognostic value of circulating tumor DNA (ctDNA) in autologous stem cell graft and post-transplant plasma samples among patients with diffuse large B-cell lymphoma. Blood. 2020;136(Suppl 1):22–3. DOI: 10.1182/blood-2020-140965.

56. Sworder B., Kurtz D.M., Alig S., et al. Determinants of resistance to engineered T-cell therapies targeting CD19 in lymphoma. Hematol Oncol. 2021;39:n/a. DOI: 10.1002/hon.6_2879.

57. Assouline S.E., Nielsen T.H., Yu S., et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood. 2016;128(2):185–94. DOI: 10.1182/blood-2016-02-699520.

58. Grommes C., DeAngelis L.M. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–18. DOI: 10.1200/JCO.2017.72.7602.

59. Fox C.P., Phillips E.H., Smith J., et al., British Society for Haematology. Guidelines for the diagnosis and management of primary central nervous system diffuse large B-cell lymphoma. Br J Haematol. 2019;184(3):348–63. DOI: 10.1111/ bjh.15661.

60. Mutter J.A., Alig S.K., Esfahani M.S., et al. Circulating tumor DNA profi ling for detection, risk stratifi cation, and classifi cation of brain lymphomas. J Clin Oncol. 2023;41(9):1684–94. DOI: 10.1200/JCO.22.00826.

61. Grommes C., Tang S.S., Wolfe J., et al. Phase 1b trial of an ibrutinibbased combination therapy in recurrent/refractory CNS lymphoma. Blood. 2019;133(5):436–45. DOI: 10.1182/blood-2018-09-875732.

62. Bobillo S., Crespo M., Escudero L., et al. Cell free circulating tumor DNA in cerebrospinal fl uid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 2021;106(2):513–21. DOI: 10.3324/haematol.2019.241208.

63. Yoon S.E., Kim Y.J., Shim J.H., et al. Plasma circulating tumor DNA in patients with primary central nervous system lymphoma. Cancer Res Treat. 2021;54(2):597–612. DOI: 10.4143/crt.2021.752.

64. Nakamura T, Tateishi K, Niwa T, et al. Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol Appl Neurobiol. 2016;42(3):279–90. DOI: 10.1111/nan.12259.

65. Vater I., Montesinos-Rongen M., Schlesner M., et al. The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia. 2015;29(3):677–85. DOI: 10.1038/leu.2014.264.

66. Hattori K., Sakata-Yanagimoto M., Suehara Y., et al. Clinical signifi cance of disease-specifi c MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018;109(1):225–30. DOI: 10.1111/cas.13450.

67. Hiemcke-Jiwa L.S., Leguit R.J., Snijders T.J., et al. MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br J Haematol. 2019;185(5):974–7. DOI: 10.1111/bjh.15674.

68. Hiemcke-Jiwa L.S., Minnema M.C., Radersma-van Loon J.H., et al. The use of droplet digital PCR in liquid biopsies: a highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fl uid. Hematol Oncol. 2018;36(2):429–35. DOI: 10.1002/hon.2489.

69. Rimelen V., Ahle G., Pencreach E., et al. Tumor cell-free DNA detection in CSF for primary CNS lymphoma diagnosis. Acta Neuropathol Commun. 2019;7(1):43. DOI: 10.1186/s40478-019-0692-8.

70. Watanabe J., Natsumeda M., Kanemaru Y., et al. Comparison of circulating tumor DNA between body fl uids in patients with primary central nervous system lymphoma. Leuk Lymphoma. 2019;60(14):3587–9. DOI: 10.1080/10428194.2019.1639169.

71. Ferreri A.J.M., Calimeri T., Lopedote P., et al. MYD88 L265P mutation and interleukin-10 detection in cerebrospinal fl uid are highly specifi c discriminating markers in patients with primary central nervous system lymphoma: results from a prospective study. Br J Haematol. 2021;193(3):497–505. DOI: 10.1111/bjh.17357.

72. Kreissl S., Mueller H., Goergen H., et al., German Hodgkin Study Group. Cancer-related fatigue in patients with and survivors of Hodgkin’s lymphoma: a longitudinal study of the German Hodgkin Study Group. Lancet Oncol. 2016;17:1453–62. DOI: 10.1016/S1470-2045(16)30093-6.

73. Eichenauer D.A., Thielen I., Haverkamp H., et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123:1658–64. DOI: 10.1182/blood-2013-07-512657.

74. Behringer K., Mueller H., Goergen H., et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol. 2013;31(2):231–9. DOI: 10.1200/JCO.2012.44.3721.

75. Borchmann S., Müller H., Haverkamp H., et al. Symptomatic osteonecrosis as a treatment complication in Hodgkin lymphoma: an analysis of the German Hodgkin Study Group (GHSG). Leukemia. 2019;33(2):439–46. DOI: 10.1038/s41375-018-0240-8.

76. Borchmann S., Müller H., Hude I., et al. Thrombosis as a treatment complication in Hodgkin lymphoma patients: a comprehensive analysis of three prospective randomized German Hodgkin Study Group (GHSG) trials. Ann Oncol. 2019;30(8):1329–34. DOI: 10.1093/annonc/mdz168.

77. Oki Y., Neelapu S.S., Fanale M., et al. Detection of classical Hodgkin lymphoma specifi c sequence in peripheral blood using a next-generation sequencing approach. Br J Haematol. 2015;169:689–93. DOI: 10.1111/bjh.13349.

78. Jin M., Kurtz D.M., Esfahani M.S., et al. Circulating tumor DNA as a biomarker for the noninvasive genotyping and monitoring of classical Hodgkin lymphoma. Hemasphere. 2018;2(Suppl 3):4–5. DOI: 10.1097/01.HS9.0000547853.28395.1c.

79. Wienand K., Chapuy B., Stewart C., et al. Genomic analyses of fl ow-sorted Hodgkin Reed–Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3:4065–80. DOI: 10.1182/bloodadvances.2019001012.

80. Mareschal S., Dubois S., Viailly P.-J., et al. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2015;55(3):251–67. DOI: 10.1002/gcc.22328.

81. Dubois S., Viailly P.J., Mareschal S., et al. Next Generation Sequencing in Diffuse Large B Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study. Clin Cancer Res. 2016;22(12):2919–28. DOI: 10.1158/1078-0432.CCR-15-2305.

82. Reichel J., Chadburn A., Rubinstein P.G., et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed–Sternberg cells. Blood. 2015;125(7):1061–72. DOI: 10.1182/blood-2014-11-610436.

83. Schmitz R., Stanelle J., Hansmann M.-L., Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4:151– 74. DOI: 10.1146/annurev.pathol.4.110807.092209.

84. Steidl C., Gascoyne R.D. The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood. 2011;118(10):2659–69. DOI: 10.1182/blood-2011-05-326538.

85. Ritz O., Guiter C., Castellano F., et al. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood. 2009;114(6):1236–42. DOI: 10.1182/blood-2009-03-209759.

86. Buedts L., Wlodarska I., Finalet-Ferreiro J., et al. The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU Leuven and LYSA study on cell-free DNA. Blood Adv. 2021;5(7):1991–2002. DOI: 10.1182/bloodadvances.2020003039.

87. Raman L., Van der Linden M., De Vriendt C., et al. Shallow-depth sequencing of cell-free DNA for Hodgkin and diffuse large B-cell lymphoma (differential) diagnosis: a standardized approach with underappreciated potential. Haematologica. 2022;107(1):211–20. DOI: 10.3324/haematol.2020.268813.

88. Sobesky S., Mammadova L., Cirillo M., et al. In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection. Med. 2021;2(10):1171–93.e11. DOI: 10.1016/j.medj.2021.09.002.

89. Camus V., Viennot M., Lequesne J., et al. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica. 2021;106(1):154–62. DOI: 10.3324/haematol.2019.237719.

90. Schroers-Martin J.G., Alig S., Garofalo A., et al. Molecular Monitoring of Lymphomas. Annu Rev Pathol. 2023;18:149–80. DOI: 10.1146/annurevpathol-050520-044652.

91. Mithraprabhu S., Reynolds J., Turner R., et al. Circulating tumour DNA analysis predicts relapse and improves risk stratifi cation in primary refractory multiple myeloma. Blood Cancer J. 2023;13(1):25. DOI: 10.1038/s41408-023-00796-9.

92. Chiu B.C.-H., Zhang Z., Derman B.A., et al. Genome-wide profi ling of 5-hydroxymethylcytosines in circulating cell-free DNA reveals populationspecifi c pathways in the development of multiple myeloma. J Hematol Oncol. 2022;15(1):106. DOI: 10.1186/s13045-022-01327-y.

93. Garcia-Gisbert N., Fernández-Ibarrondo L., Fernández-Rodríguez C., et al. Circulating cell-free DNA improves the molecular characterisation of Ph-negative myeloproliferative neoplasms. Br J Haematol. 2021;192(2):300–9. DOI: 10.1111/bjh.17087.

94. Wu Y.Y., Jia M.N., Cai H., et al. Detection of the MYD88L265P and CXCR4S338X mutations by cell-free DNA in Waldenström macroglobulinemia. Ann Hematol. 2020;99(8):1763–9. DOI: 10.1007/s00277-020-04139-7.

95. Zhou X., Lang W., Mei C., et al. Serial monitoring of circulating tumour DNA on clinical outcome in myelodysplastic syndromes and acute myeloid leukaemia. Clin Transl Med. 2023;13(7):e1349. DOI: 10.1002/ctm2.1349.

96. Zhu H., Feng G., Zhao N., et al. Characterization of Serous Cell-Free DNA in Myelodysplastic Syndromes. Cell Transplant. 2022;31:9636897221143363. DOI: 10.1177/09636897221143363.

97. Rossi D., Kurtz D.M., Roschewski M., et al. The development of liquid biopsy for research and clinical practice in lymphomas: report of the 15-ICML workshop on ctDNA. Hematol Oncol. 2020;38(1):34–7. DOI: 10.1002/hon.2704.

98. Huet S., Salles G. Potential of circulating tumor DNA for the management of patients with lymphoma. JCO Oncol Pract. 2020;16:561–8. DOI: 10.1200/JOP.19.00691.

99. Schroers-Martin J.G., Kurtz D.M., Soo J., et al. Determinants of circulating tumor DNA levels across lymphoma histologic subtypes. Blood. 2017;130(Suppl 1):4018. DOI: 10.1182/blood.V130.Suppl_1.4018.4018.

100. Nikulina E.E., Risinskaya N.V., Dubova O.E., et al. Effect of DNA target size on the effi ciency of chimerism measurement in circulating free plasma DNA. Transplantologiya. 2024;16(4):458–72 (In Russian). DOI: 10.23873/2074-0506-2024-16-4-458-472.

101. Lauer E.M., Mutter J., Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia. 2022;36(9):2151–64. DOI: 10.1038/s41375-022-01618-w.

102. Che H., Jatsenko T., Lannoo L., et al. Machine learning-based detection of immune-mediated diseases from genome-wide cell-free DNA sequencing datasets. NPJ Genom Med. 2022;7(1):55. DOI: 10.1038/s41525-022-00325-w.

103. Peng Y., Wu Y., Chen S., et al. Circulating cell-free DNA correlate to disease activity and treatment response of patients with radiographic axial spondyloarthritis. Sci Rep. 2024;14(1):178. DOI: 10.1038/s41598-023-50543-0.

104. MacKinnon H.J., Kolarova T.R., Katz R., et al. The impact of maternal autoimmune disease on cell-free DNA test characteristics. Am J Obstet Gynecol MFM. 2021;3(6):100466. DOI: 10.1016/j.ajogmf.2021.100466.

105. Duvvuri B., Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol. 2019;10:502. DOI: 10.3389/fimmu.2019.00502.


Review

For citations:


Smirnova S.Yu., Nikulina E.E., Sudarikov A.B. Cell free DNA in patient with aggressive mature cell B-cell lymphomas and Hodgkin’s lymphoma (literature review). Russian journal of hematology and transfusiology. 2025;70(3):383-395. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-3-383-395

Views: 231


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)