Hemostasis disorders associated with therapy with T-lymphocytes with a chimeric antigenic receptor
https://doi.org/10.35754/0234-5730-2025-70-3-396-407
Abstract
Introduction. Chimeric Antigen Receptor T-cell (CAR-T) therapy is an effective treatment for relapsed/refractory (R/R) lymphoproliferative diseases. Hemostasis disorders can complicate CAR T-cell therapy.
Aim: to examine hemostatic disorders arising during CAR T-cell therapy.
Main fi ndings. CAR T-cell therapy leads to disorders of both the platelet and plasma components of hemostasis. CAR T-associated thrombocytopenia can be early (from day 0 to +30), late (from day 31 to 90), or persistent (after day +90). Treatment involves both platelet concentrate transfusions and, in some cases, thrombopoietin receptor agonists. Coagulation disorders manifest as both hemorrhagic syndrome and thromboembolic complications. Guidelines for hemostatic and anticoagulant therapy have not yet been established.
About the Authors
G. M. GalstyanRussian Federation
Gennadiy M. Galstyan, Dr. Sci. (Med.), Head of the Resuscitation and Intensive Care Department
125167, Moscow
D. Yu. Kostuk
Russian Federation
Daria Yu. Kostyuk, Postgraduate Student, Resuscitation and Intensive Care Department
125167, Moscow
S. A. Nalbandyan
Russian Federation
Siranush A. Nalbandyan, Physician, Resuscitation and Intensive Care Department
125167, Moscow
References
1. Gagelmann N., Bishop M., Ayuk F., et al. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transpl Cell Ther. 2024;30(6):584.e1–584.e13. DOI: 10.1016/j.jtct.2024.01.074.
2. He B., Lin R., Xu N., et al. Effi cacy and safety of third-generation CD19-CAR T cells incorporating CD28 and TLR2 intracellular domains for B-cell malignancies with central nervous system involvement: results of a pivotal trial. J Transl Med. 2025;23(1). DOI: 10.1186/S12967-025-06608-X.
3. Perl M., Herfeld K., Harrer D.C., et al. Tocilizumab administration in cytokine release syndrome is associated with hypofi brinogenemia after chimeric antigen receptor T-cell therapy for hematologic malignancies. Haematologica. 2024;109(9):2969–77. DOI: 10.3324/haematol.2023.284564.
4. Wang X., Li C., Luo W., et al. IL-10 plus the EASIX score predict bleeding events after anti-CD19 CAR T-cell therapy. Ann Hematol. 2023;102(12):3575–85. DOI: 10.1007/s00277-023-05477-y.
5. Johnsrud A., Craig J., Baird J., et al. Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy. Blood Adv. 2021;5(21):4465–75. DOI: 10.1182/bloodadvances.2021004716.
6. Luft T., Benner A., Jodele S., et al. EASIX in patients with acute graft-versus-host disease: a retrospective cohort analysis. Lancet Haematol. 2017;4(9):e414–23. DOI: 10.1016/S2352-3026(17)30108-4.
7. Pennisi M., Sanchez-Escamilla M., Flynn J.R., et al. Modifi ed EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 2021;5(17):3397–406. DOI: 10.1182/BLOODADVANCES.2020003885.
8. Liu R., Lv Y., Hong F., et al. A comprehensive analysis of coagulopathy dur- ing anti-B cell maturation antigen chimeric antigen receptor-T therapy in multiple myeloma, a retrospective study based on LEGEND-2. Hematol Oncol. 2023;41(4):704–11. DOI: 10.1002/hon.3155.
9. Bindal P., Patell R., Chiasakul T., et al. A meta-analysis to assess the risk of bleeding and thrombosis following chimeric antigen receptor T-cell therapy: Communication from the ISTH SSC Subcommittee on Hemostasis and Malignancy. J Thromb Haemost. 2024;22(7):2071–80. DOI: 10.1016/j.jtha.2024.03.021.
10. Jain T., Olson T.S., Locke F.L. How I treat cytopenias after CAR T-cell therapy. Blood. 2023;141(20):2460–9. DOI: 10.1182/BLOOD.2022017415.
11. Fried S., Avigdor A., Bielorai B., et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transpl. 2019;54(10):1643–50. DOI: 10.1038/s41409-019-0487-3.
12. Neelapu S.S., Locke F.L., Bartlett N.L., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New Engl J Med. 2017;377(26):2531–44. DOI: 10.1056/NEJMOA1707447.
13. Schuster S.J., Bishop M.R., Tam C.S., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. New Engl J Med. 2019;380(1):45– 56. DOI: 10.1056/NEJMOA1804980/SUPPL_FILE/NEJMOA1804980_DISCLOSURES.PDF.
14. Abramson J.S., Gordon L.I., Palomba M.L., et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018;36(15_suppl):7505–7505. DOI: 10.1200/JCO.2018.36.15_SUPPL.7505.
15. Wang M., Munoz J., Goy A., et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331–42. DOI: 10.1056/NEJMOA1914347.
16. Maude S.L., Laetsch T.W., Buechner J., et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. DOI: 10.1056/nejmoa1709866.
17. Munshi N.C., Anderson L.D., Shah N., et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. New Engl J Med. 2021;384(8):705– 16. DOI: 10.1056/NEJMOA2024850/SUPPL_FILE/NEJMOA2024850_DATA-SHARING.PDF.
18. Berdeja J.G., Madduri D., Usmani S.Z., et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–24. DOI: 10.1016/S0140-6736(21)00933-8.
19. Rejeski K., Sanz J., Fei T., et al. T-ICAHT: grading and prognostic impact of thrombocytopenia after CAR T-cell therapy. Blood. 2025;146(7):834–46. DOI: 10.1182/BLOOD.2025028833.
20. Rejeski K., Perez A., Sesques P., et al. CAR-HEMATOTOX: a model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138(24):2499–513. DOI: 10.1182/blood.2020010543.
21. Wiemers T.C., Fandrei D., Seiffert S., et al. Persistent Thrombocytopenia and Neutropenia Are Associated with Increased Mortality in Patients Treated with Anti-BCMA CAR T Cells for Relapsed/Refractory Multiple Myeloma. Blood. 2024;144(Supplement 1):7095. DOI: 10.1182/BLOOD-2024-202101.
22. Waddell D., Collins J., Sadrameli S. Utility of Thrombopoietin Receptor Agonists for Prolonged Thrombocytopenia After Chimeric Antigen Receptor Tcell Therapy. Transpl Cell Ther. 2025;31(4):238.e1-238.e12. DOI: 10.1016/j.jtct.2025.01.887.
23. Sharma N., Reagan P.M., Liesveld J.L. Cytopenia after CAR-T Cell Therapy— A Brief Review of a Complex Problem. Cancers (Basel). 2022;14(6):1501. DOI: 10.3390/CANCERS14061501.
24. Locke F.L., Ghobadi A., Jacobson C.A., et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. DOI: 10.1016/S1470-2045(18)30864-7.
25. Logue J.M., Zucchetti E., Bachmeier C.A., et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica. 2021;106(4):978–86. DOI: 10.3324/HAEMATOL.2019.238634.
26. Vic S., Thibert J.B., Bachy E., et al. Transfusion needs after CAR T-cell therapy for large B-cell lymphoma: predictive factors and outcome (a DESCAR-T study). Blood Adv. 2024;8(6):1573–85. DOI: 10.1182/bloodadvances.2023011727.
27. Dahunsi D., Eleanya C., Akintunde A., et al. Prolonged Cytopenia With Car-T Cell Therapy and Management Recommendations. Clin Hematol Int. 2025;7(1):66–73. DOI: 10.46989/001c.126463.
28. Drillet G., Lhomme F., De Guibert S., et al. Prolonged thrombocytopenia after CAR T-cell therapy: the role of thrombopoietin receptor agonists. Blood Adv. 2023;7(4):537–40. DOI: 10.1182/bloodadvances.2022008066.
29. Tezuka Y., Onoda N., Morishima T., et al. Expansion effect of romiplostim on hematopoietic stem and progenitor cells versus thrombopoietin and eltrombopag. Int J Hematol . 2024;120(5):575–86. DOI: 10.1007/s12185-024-03853-6.
30. Corona M., Shouval R., Alarcón A., et al. Management of prolonged cytopenia following CAR T-cell therapy. Bone Marrow Transpl. 2022;57(12):1839–41. DOI: 10.1038/S41409-022-01771-X,.
31. Baur R., Jitschin R., Kharboutli S., et al. Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: A case report. J Immunother Cancer. 2021;9(7). DOI: 10.1136/JITC-2021-002721,.
32. Wesson W., Nelson M., Mushtaq M., et al. Eltrombopag Stimulation for Neutrophil and Platelet Recovery Following Axicabtagene Ciloleucel (axi-cel) Therapy in Lymphoma. Blood. 2022;140(Supplement 1):12757–9. DOI: 10.1182/BLOOD-2022-162433.
33. Mei H., Chen F., Han Y., et al. Chinese expert consensus on the management of chimeric antigen receptor T cell therapy-associated coagulopathy. Chin Med J. 2022;135(14):1639–41. DOI: 10.1097/CM9.0000000000002288.
34. Jiang H., Mei H., Dong J., et al. Abnormal Coagulation Function in CD19-Targeted CAR-T Therapy. Blood. 2017;130(Supplement 1):2607. DOI: 10.1182/?lood.V130.?uppl_1.2607.2607?
35. Miao L., Zhang Z., Ren Z., et al. Reactions Related to CAR-T Cell Therapy. Front Immunol. 2021;12(April). DOI: 10.3389/fimmu.2021.663201.
36. Li Y.Y., Li P.R., Jiang H.W., et al. CD19 CAR-T treatment for B-lymphoblastic lymphoma complicated with disseminated intravascular coagulation: a case report and literature review. Zhonghua xueyexue zazhi. 2024;45(S1):5–11. DOI: 10.3760/cma.j.cn121090-20241202-00523.
37. Wang Y., Qi K., Cheng H., et al. Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy: Analysis of 100 Patients with Relapsed and Refractory Hematologic Malignancies: Coagulation Disorders after CAR-T Cell Therapy. Biol Blood Marrow Transpl. 2020;26(5):865–75. DOI: 10.1016/j.bbmt.2019.11.027.
38. Dong R., Wang Y., Lin Y., et al. The correlation factors and prognostic signifi - cance of coagulation disorders after chimeric antigen receptor T cell therapy in hematological malignancies: a cohort study. Ann Transl Med. 2022;10(18):975– 975. DOI: 10.21037/atm-22-3814.
39. Jiang H., Liu L., Guo T., et al. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann Hematol. 2019;98(7):1721–32. DOI: 10.1007/S00277-019-03685-Z.
40. Quian-Wen X., Lei X., Min W. Coagulation Disorder and Relevant Factors Analysis after Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. J Clin Transfus Lab Med. 2021;23(3):364–70. DOI: 10.3969/j.issn.1671-2587.2021.03.016.
41. Cai L., Wen X., Qiu Z., et al. Characteristics, risk factors and a risk prediction model of tocilizumab-induced hypofi brinogenemia: a retrospective realworld study of inpatients. BMC Pharmacol Toxicol. 2025;26(1):5. DOI: 10.1186/s40360-024-00827-6.
42. Yang H., Ma X., Li X. The diagnosis of DIC: a current overview. Front Med. 2025;12. DOI: 10.3389/FMED.2025.1502628/PDF.
43. Hines M.R., Knight T.E., McNerney K.O., et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transpl Cell Ther. 2023;29(7):438.e1-438.e16. DOI: 10.1016/j.jtct.2023.03.006.
44. Yıldırım R., Cansu D.Ü., Dinler M., et al. Evaluation of tocilizumab-induced hypofi brinogenemia in rheumatology practice: a retrospective, real-life, single-center experience. Rheumatol Int. 2024;44(12):2927–34. DOI: 10.1007/S00296-024-05714-1,.
45. Okano T., Inui K., Tada M., et al. Levels of interleukin-1 beta can predict response to tocilizumab therapy in rheumatoid arthritis: the PETITE (predictors of effectiveness of tocilizumab therapy) study. Rheumatol Int. 2016;36(3):349–57. DOI: 10.1007/S00296-015-3379-X.
46. McInnes I.B., Thompson L., Giles J.T., et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis. 2015;74(4):694–702. DOI: 10.1136/annrheumdis-2013-204345.
47. An Q., Ma R., Yuan D., et al. Clinical observation of hypofi brinogenemia induced by the treatment of tocilizumab in rheumatic diseases and exploration of risk factor for hypofi brinogenemia. Clin Rheumatol. 2024;43(5):1491–501. DOI: 10.1007/S10067-024-06937-0.
48. He T., Ling J., Yang J. Tocilizumab-induced hypofi brinogenemia in patients with systemic-onset juvenile idiopathic arthritis. Sci Rep. 2023;13(1). DOI: 10.1038/S41598-023-36246-6.
49. Hashmi H., Mirza A.-S., Darwin A., et al. Hypofi brinogenemia in Patients Receiving CD19-Directed Chimeric Antigen Receptor (CAR) T-Cell Therapy for Large B Cell Lymphoma: A Single Institution Experience. Biol Blood Marrow Transpl. 2020;26(3):S257–8. DOI: 10.1016/j.bbmt.2019.12.451.
50. Hashmi H., Mirza A.S., Darwin A., et al. Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Adv. 2020;4(17):4086–90. DOI: 10.1182/BLOODADVANCES.2020002060.
51. Schorr C., Forindez J., Espinoza-Gutarra M., et al. Thrombotic Events Are Unusual Toxicities of Chimeric Antigen Receptor T-Cell Therapies. Int J Mol Sci. 2023;24(9):8349. DOI: 10.3390/ijms24098349.
52. Yamasaki-Morita M., Arai Y., Ishihara T., et al. Relative hypercoagulation induced by suppressed fi brinolysis after tisagenlecleucel infusion in malignant lymphoma. Blood Adv. 2022;6(14):4216–23. DOI: 10.1182/bloodadvances.2022007454.
53. Chen L., Ding S., Cheng Y., et al. Application of thromboelastography to predict the severity of bleeding after chimeric antigen receptor (CAR)-T cell therapy in patients with hematological malignancy. Eur J Haematol. 2024;112(2):257–65. DOI: 10.1111/ejh.14099.
Review
For citations:
Galstyan G.M., Kostuk D.Yu., Nalbandyan S.A. Hemostasis disorders associated with therapy with T-lymphocytes with a chimeric antigenic receptor. Russian journal of hematology and transfusiology. 2025;70(3):396-407. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-3-396-407