Нарушения гемостаза, ассоциированные с проведением терапии Т-лимфоцитами с химерным антигенным рецептором
https://doi.org/10.35754/0234-5730-2025-70-3-396-407
Аннотация
Введение. Терапия T-лимфоцитами с химерным антигенным рецептором (Chimeric Antigen Receptor T-Cells, CAR T) является эффективным методом лечения рецидивов/резистентных форм (Р/Р) лимфопролиферативных заболеваний. Нарушения гемостаза могут осложнять CAR T-клеточную терапию.
Цель: рассмотреть нарушения гемостаза, возникающие при проведении CAR T-клеточной терапии.
Основные сведения. При CAR T-клеточной терапии возникают нарушения как тромбоцитарного, так и плазменного звеньев гемостаза. CAR T-ассоциированная тромбоцитопения может быть ранней (от 0 до +30 дня), поздней (от 31-го до 90-го дня), персистирующей (после +90 дня). Для лечения применяют как трансфузии концентратов тромбоцитов, так и в ряде случаев агонисты тромбопоэтиновых рецепторов. Коагуляционные нарушения проявляются как геморрагическим синдромом, так и тромбоэмболическими осложнениями. Тактика гемостатической и антикоагулянтной терапии до сих пор не разработана.
Об авторах
Г. М. ГалстянРоссия
Галстян Геннадий Мартинович, доктор медицинских наук, заведующий отделением реанимации и интенсивной терапии
125167, г. Москва
Д. Ю. Костюк
Россия
Костюк Дарья Юрьевна, аспирант отделения реанимации и интенсивной терапии
125167, г. Москва
С. А. Налбандян
Россия
Налбандян Сирануш Ашотовна, анестезиолог-реаниматолог отделения реанимации и интенсивной терапии
125167, г. Москва
Список литературы
1. Gagelmann N., Bishop M., Ayuk F., et al. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transpl Cell Ther. 2024;30(6):584.e1–584.e13. DOI: 10.1016/j.jtct.2024.01.074.
2. He B., Lin R., Xu N., et al. Effi cacy and safety of third-generation CD19-CAR T cells incorporating CD28 and TLR2 intracellular domains for B-cell malignancies with central nervous system involvement: results of a pivotal trial. J Transl Med. 2025;23(1). DOI: 10.1186/S12967-025-06608-X.
3. Perl M., Herfeld K., Harrer D.C., et al. Tocilizumab administration in cytokine release syndrome is associated with hypofi brinogenemia after chimeric antigen receptor T-cell therapy for hematologic malignancies. Haematologica. 2024;109(9):2969–77. DOI: 10.3324/haematol.2023.284564.
4. Wang X., Li C., Luo W., et al. IL-10 plus the EASIX score predict bleeding events after anti-CD19 CAR T-cell therapy. Ann Hematol. 2023;102(12):3575–85. DOI: 10.1007/s00277-023-05477-y.
5. Johnsrud A., Craig J., Baird J., et al. Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy. Blood Adv. 2021;5(21):4465–75. DOI: 10.1182/bloodadvances.2021004716.
6. Luft T., Benner A., Jodele S., et al. EASIX in patients with acute graft-versus-host disease: a retrospective cohort analysis. Lancet Haematol. 2017;4(9):e414–23. DOI: 10.1016/S2352-3026(17)30108-4.
7. Pennisi M., Sanchez-Escamilla M., Flynn J.R., et al. Modifi ed EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 2021;5(17):3397–406. DOI: 10.1182/BLOODADVANCES.2020003885.
8. Liu R., Lv Y., Hong F., et al. A comprehensive analysis of coagulopathy dur- ing anti-B cell maturation antigen chimeric antigen receptor-T therapy in multiple myeloma, a retrospective study based on LEGEND-2. Hematol Oncol. 2023;41(4):704–11. DOI: 10.1002/hon.3155.
9. Bindal P., Patell R., Chiasakul T., et al. A meta-analysis to assess the risk of bleeding and thrombosis following chimeric antigen receptor T-cell therapy: Communication from the ISTH SSC Subcommittee on Hemostasis and Malignancy. J Thromb Haemost. 2024;22(7):2071–80. DOI: 10.1016/j.jtha.2024.03.021.
10. Jain T., Olson T.S., Locke F.L. How I treat cytopenias after CAR T-cell therapy. Blood. 2023;141(20):2460–9. DOI: 10.1182/BLOOD.2022017415.
11. Fried S., Avigdor A., Bielorai B., et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transpl. 2019;54(10):1643–50. DOI: 10.1038/s41409-019-0487-3.
12. Neelapu S.S., Locke F.L., Bartlett N.L., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New Engl J Med. 2017;377(26):2531–44. DOI: 10.1056/NEJMOA1707447.
13. Schuster S.J., Bishop M.R., Tam C.S., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. New Engl J Med. 2019;380(1):45– 56. DOI: 10.1056/NEJMOA1804980/SUPPL_FILE/NEJMOA1804980_DISCLOSURES.PDF.
14. Abramson J.S., Gordon L.I., Palomba M.L., et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018;36(15_suppl):7505–7505. DOI: 10.1200/JCO.2018.36.15_SUPPL.7505.
15. Wang M., Munoz J., Goy A., et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331–42. DOI: 10.1056/NEJMOA1914347.
16. Maude S.L., Laetsch T.W., Buechner J., et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. DOI: 10.1056/nejmoa1709866.
17. Munshi N.C., Anderson L.D., Shah N., et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. New Engl J Med. 2021;384(8):705– 16. DOI: 10.1056/NEJMOA2024850/SUPPL_FILE/NEJMOA2024850_DATA-SHARING.PDF.
18. Berdeja J.G., Madduri D., Usmani S.Z., et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–24. DOI: 10.1016/S0140-6736(21)00933-8.
19. Rejeski K., Sanz J., Fei T., et al. T-ICAHT: grading and prognostic impact of thrombocytopenia after CAR T-cell therapy. Blood. 2025;146(7):834–46. DOI: 10.1182/BLOOD.2025028833.
20. Rejeski K., Perez A., Sesques P., et al. CAR-HEMATOTOX: a model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138(24):2499–513. DOI: 10.1182/blood.2020010543.
21. Wiemers T.C., Fandrei D., Seiffert S., et al. Persistent Thrombocytopenia and Neutropenia Are Associated with Increased Mortality in Patients Treated with Anti-BCMA CAR T Cells for Relapsed/Refractory Multiple Myeloma. Blood. 2024;144(Supplement 1):7095. DOI: 10.1182/BLOOD-2024-202101.
22. Waddell D., Collins J., Sadrameli S. Utility of Thrombopoietin Receptor Agonists for Prolonged Thrombocytopenia After Chimeric Antigen Receptor Tcell Therapy. Transpl Cell Ther. 2025;31(4):238.e1-238.e12. DOI: 10.1016/j.jtct.2025.01.887.
23. Sharma N., Reagan P.M., Liesveld J.L. Cytopenia after CAR-T Cell Therapy— A Brief Review of a Complex Problem. Cancers (Basel). 2022;14(6):1501. DOI: 10.3390/CANCERS14061501.
24. Locke F.L., Ghobadi A., Jacobson C.A., et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. DOI: 10.1016/S1470-2045(18)30864-7.
25. Logue J.M., Zucchetti E., Bachmeier C.A., et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica. 2021;106(4):978–86. DOI: 10.3324/HAEMATOL.2019.238634.
26. Vic S., Thibert J.B., Bachy E., et al. Transfusion needs after CAR T-cell therapy for large B-cell lymphoma: predictive factors and outcome (a DESCAR-T study). Blood Adv. 2024;8(6):1573–85. DOI: 10.1182/bloodadvances.2023011727.
27. Dahunsi D., Eleanya C., Akintunde A., et al. Prolonged Cytopenia With Car-T Cell Therapy and Management Recommendations. Clin Hematol Int. 2025;7(1):66–73. DOI: 10.46989/001c.126463.
28. Drillet G., Lhomme F., De Guibert S., et al. Prolonged thrombocytopenia after CAR T-cell therapy: the role of thrombopoietin receptor agonists. Blood Adv. 2023;7(4):537–40. DOI: 10.1182/bloodadvances.2022008066.
29. Tezuka Y., Onoda N., Morishima T., et al. Expansion effect of romiplostim on hematopoietic stem and progenitor cells versus thrombopoietin and eltrombopag. Int J Hematol . 2024;120(5):575–86. DOI: 10.1007/s12185-024-03853-6.
30. Corona M., Shouval R., Alarcón A., et al. Management of prolonged cytopenia following CAR T-cell therapy. Bone Marrow Transpl. 2022;57(12):1839–41. DOI: 10.1038/S41409-022-01771-X,.
31. Baur R., Jitschin R., Kharboutli S., et al. Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: A case report. J Immunother Cancer. 2021;9(7). DOI: 10.1136/JITC-2021-002721,.
32. Wesson W., Nelson M., Mushtaq M., et al. Eltrombopag Stimulation for Neutrophil and Platelet Recovery Following Axicabtagene Ciloleucel (axi-cel) Therapy in Lymphoma. Blood. 2022;140(Supplement 1):12757–9. DOI: 10.1182/BLOOD-2022-162433.
33. Mei H., Chen F., Han Y., et al. Chinese expert consensus on the management of chimeric antigen receptor T cell therapy-associated coagulopathy. Chin Med J. 2022;135(14):1639–41. DOI: 10.1097/CM9.0000000000002288.
34. Jiang H., Mei H., Dong J., et al. Abnormal Coagulation Function in CD19-Targeted CAR-T Therapy. Blood. 2017;130(Supplement 1):2607. DOI: 10.1182/?lood.V130.?uppl_1.2607.2607?
35. Miao L., Zhang Z., Ren Z., et al. Reactions Related to CAR-T Cell Therapy. Front Immunol. 2021;12(April). DOI: 10.3389/fimmu.2021.663201.
36. Li Y.Y., Li P.R., Jiang H.W., et al. CD19 CAR-T treatment for B-lymphoblastic lymphoma complicated with disseminated intravascular coagulation: a case report and literature review. Zhonghua xueyexue zazhi. 2024;45(S1):5–11. DOI: 10.3760/cma.j.cn121090-20241202-00523.
37. Wang Y., Qi K., Cheng H., et al. Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy: Analysis of 100 Patients with Relapsed and Refractory Hematologic Malignancies: Coagulation Disorders after CAR-T Cell Therapy. Biol Blood Marrow Transpl. 2020;26(5):865–75. DOI: 10.1016/j.bbmt.2019.11.027.
38. Dong R., Wang Y., Lin Y., et al. The correlation factors and prognostic signifi - cance of coagulation disorders after chimeric antigen receptor T cell therapy in hematological malignancies: a cohort study. Ann Transl Med. 2022;10(18):975– 975. DOI: 10.21037/atm-22-3814.
39. Jiang H., Liu L., Guo T., et al. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann Hematol. 2019;98(7):1721–32. DOI: 10.1007/S00277-019-03685-Z.
40. Quian-Wen X., Lei X., Min W. Coagulation Disorder and Relevant Factors Analysis after Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. J Clin Transfus Lab Med. 2021;23(3):364–70. DOI: 10.3969/j.issn.1671-2587.2021.03.016.
41. Cai L., Wen X., Qiu Z., et al. Characteristics, risk factors and a risk prediction model of tocilizumab-induced hypofi brinogenemia: a retrospective realworld study of inpatients. BMC Pharmacol Toxicol. 2025;26(1):5. DOI: 10.1186/s40360-024-00827-6.
42. Yang H., Ma X., Li X. The diagnosis of DIC: a current overview. Front Med. 2025;12. DOI: 10.3389/FMED.2025.1502628/PDF.
43. Hines M.R., Knight T.E., McNerney K.O., et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transpl Cell Ther. 2023;29(7):438.e1-438.e16. DOI: 10.1016/j.jtct.2023.03.006.
44. Yıldırım R., Cansu D.Ü., Dinler M., et al. Evaluation of tocilizumab-induced hypofi brinogenemia in rheumatology practice: a retrospective, real-life, single-center experience. Rheumatol Int. 2024;44(12):2927–34. DOI: 10.1007/S00296-024-05714-1,.
45. Okano T., Inui K., Tada M., et al. Levels of interleukin-1 beta can predict response to tocilizumab therapy in rheumatoid arthritis: the PETITE (predictors of effectiveness of tocilizumab therapy) study. Rheumatol Int. 2016;36(3):349–57. DOI: 10.1007/S00296-015-3379-X.
46. McInnes I.B., Thompson L., Giles J.T., et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis. 2015;74(4):694–702. DOI: 10.1136/annrheumdis-2013-204345.
47. An Q., Ma R., Yuan D., et al. Clinical observation of hypofi brinogenemia induced by the treatment of tocilizumab in rheumatic diseases and exploration of risk factor for hypofi brinogenemia. Clin Rheumatol. 2024;43(5):1491–501. DOI: 10.1007/S10067-024-06937-0.
48. He T., Ling J., Yang J. Tocilizumab-induced hypofi brinogenemia in patients with systemic-onset juvenile idiopathic arthritis. Sci Rep. 2023;13(1). DOI: 10.1038/S41598-023-36246-6.
49. Hashmi H., Mirza A.-S., Darwin A., et al. Hypofi brinogenemia in Patients Receiving CD19-Directed Chimeric Antigen Receptor (CAR) T-Cell Therapy for Large B Cell Lymphoma: A Single Institution Experience. Biol Blood Marrow Transpl. 2020;26(3):S257–8. DOI: 10.1016/j.bbmt.2019.12.451.
50. Hashmi H., Mirza A.S., Darwin A., et al. Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma. Blood Adv. 2020;4(17):4086–90. DOI: 10.1182/BLOODADVANCES.2020002060.
51. Schorr C., Forindez J., Espinoza-Gutarra M., et al. Thrombotic Events Are Unusual Toxicities of Chimeric Antigen Receptor T-Cell Therapies. Int J Mol Sci. 2023;24(9):8349. DOI: 10.3390/ijms24098349.
52. Yamasaki-Morita M., Arai Y., Ishihara T., et al. Relative hypercoagulation induced by suppressed fi brinolysis after tisagenlecleucel infusion in malignant lymphoma. Blood Adv. 2022;6(14):4216–23. DOI: 10.1182/bloodadvances.2022007454.
53. Chen L., Ding S., Cheng Y., et al. Application of thromboelastography to predict the severity of bleeding after chimeric antigen receptor (CAR)-T cell therapy in patients with hematological malignancy. Eur J Haematol. 2024;112(2):257–65. DOI: 10.1111/ejh.14099.
Рецензия
Для цитирования:
Галстян Г.М., Костюк Д.Ю., Налбандян С.А. Нарушения гемостаза, ассоциированные с проведением терапии Т-лимфоцитами с химерным антигенным рецептором. Гематология и трансфузиология. 2025;70(3):396-407. https://doi.org/10.35754/0234-5730-2025-70-3-396-407
For citation:
Galstyan G.M., Kostuk D.Yu., Nalbandyan S.A. Hemostasis disorders associated with therapy with T-lymphocytes with a chimeric antigenic receptor. Russian journal of hematology and transfusiology. 2025;70(3):396-407. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-3-396-407