Preview

Russian journal of hematology and transfusiology

Advanced search

Structural aberrations of genes associated with leukemogenesis in patients with acute myeloid leukemia of intermediate prognosis

https://doi.org/10.35754/0234-5730-2025-70-4-465-477

Abstract

Introduction. The development of therapy resistance and relapses of acute myeloid leukemia (AML), especially in the intermediate prognosis group, may be due to the molecular genetic heterogeneity of tumor cells. Chromosomal microarray analysis (CMA) can detect microdeletions, duplications, and copy-neutral loss of heterozygosity (cnLOH) which may be associated with a response to therapy.

Aim: to evaluate tthe frequency of copy number aberrations and cnLOH in leukemogenesis-associated genes in patients with intermediate-stage AML and and their relationship to survival and response to treatment.

Materials and methods. The study included 35 patients with de novo AML from the intermediate prognosis group for ELN2017. Copy number analysis by CMA was performed for a panel of 36 genes associated with leukemogenesis. The reference group included 102 healthy individuals without oncohematological disorders who also underwent comparable CMA testing.

Results. Genomic aberrations were detected in 91.18 % of patients, most often in the genes of chromatin modifiers (64.7 % patients) and tumor suppressor genes (64.7% patients). The cnLOH type (PHF6, SMC1A, BKORL1) prevailed. KMT2A duplications occurred only in AML patients — 14.3 % (p < 0.001) and were associated with worse survival (log-rank P = 0.05). Combinations of genomic alterations involving 4–7 functional gene groups were found in 20.6% of patients.

Conclusion. Driver gene aberrations, especially KMT2A duplications, are associated with an unfavorable clinical outcome in AML with an intermediate prognosis.

About the Authors

D. K. Bessmertnyy
National Medical Research Center for Hematology
Russian Federation

Dmitry K. Bessmertnyy, Hematologist, Department of hemоblastosis and hematopoietic Depression Chemotherapy with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow 



S. E. Starchenko
National Medical Research Center for Hematology
Russian Federation

Sofia E. Starchenko, specialist of Information and Analytics Division

125167, Moscow 



N. V. Risinskaya
National Medical Research Center for Hematology
Russian Federation

Natalya V. Risinskaya, Cand. Sci. (Biol.), Senior Researcher, Molecular Hematology Lab

125167, Moscow 



S. M. Kulikov
National Medical Research Center for Hematology
Russian Federation

Sergei M. Kulikov, Cand. Sci. (Tech.), Head of Information and Analytics Division

125167, Moscow 



U. A. Chabaeva
National Medical Research Center for Hematology
Russian Federation

Yulia A. Chabaeva, Cand. Sci. (Tech.), Senior Researcher, Information and Analysis Department

125167, Moscow



V. A. Surimova
National Medical Research Center for Hematology
Russian Federation

Valeria A. Surimova, Specialist of Information and Analytics Division

125167, Moscow 



A. S. Ponamoreva
Genomed Laboratory of Molecular Pathology
Russian Federation

Alina S. Ponamareva, Laboratory Geneticist

115419, Moscow



I. V. Kanivets
Genomed Laboratory of Molecular Pathology
Russian Federation

Ilya V. Kanivets, Cand. Sci. (Med.), Head of the Department of Genetics

115419, Moscow



Z. T. Fidarova
National Medical Research Center for Hematology
Russian Federation

Zalina T. Fidarova, Cand. Sci. (Med.), Head of Department of Hemоblastosis and Hematopoietic Depression Chemotherapy with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



I. A. Lukianova
National Medical Research Center for Hematology
Russian Federation

Irina A. Lukianova, Cand. Sci. (Med.), Hematologist, Head of the Department of Chemotherapy of Hemoblastosis and Hematopoietic Depressions with а Day In-patient Facility

125167, Moscow



A. I. Kashlakova
National Medical Research Center for Hematology
Russian Federation

Anastasia I. Kashlakova, Hematologist, Department of Chemotherapy of Hemoblastosis and Hematopoietic Depressions with Bone marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow 



E. V. Romanyuk
National Medical Research Center for Hematology
Russian Federation

Ekaterina V. Romanyuk, Hematologist, Department of Hemoblastosis and Hematopoietic Depression Chemotherapy with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow 



N. I. Balaeva
National Medical Research Center for Hematology
Russian Federation

Natalia I. Balaeva, Resident, Department of Hemoblastosis and Hematopoietic Depression Chemotherapy with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit

125167, Moscow



V. V. Troitskaya
National Medical Research Center for Hematology
Russian Federation

Vera V. Troitskaya, Dr. Sci. (Med.), First Deputy General Director

125167, Moscow 



A. B. Sudarikov
National Medical Research Center for Hematology
Russian Federation

Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Molecular Genetic Dpt.

125167, Moscow



E. N. Parovichnikova
National Medical Research Center for Hematology
Russian Federation

Elena N. Parovichnikova, Dr. Sci. (Med.), Corresponding Member of the RAS, CEO

125167, Moscow 



References

1. De Kouchkovsky I., Abdul-Hay M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update.’ Blood Cancer J. 2016;6(7):e441. DOI: 10.1038/bcj.2016.50.

2. Lagunas-Rangel F.A., Chávez-Valencia V., Gómez-Guijosa M.Á., et al. Acute Myeloid Leukemia-Genetic Alterations and Their Clinical Prognosis. Int J Hematol stem cell Res. 2017;11(4):328–39.

3. Khoury J.D., Solary E., Abla O., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703–19. DOI: 10.1038/s41375-022-01613-1.

4. Pollyea D.A., Altman J.K., Assi R., et al. Acute Myeloid Leukemia, Version 3.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2023;21(5):503–13. DOI: 10.6004/jnccn.2023.0025.

5. Arber D.A., Orazi A., Hasserjian R.P., et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28. DOI: 10.1182/blood.2022015850.

6. Döhner H., Estey E., Grimwade D., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. DOI: 10.1182/blood-2016-08-733196.

7. Döhner H., Wei A.H., Appelbaum F.R., et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867.

8. Lo M.Y., Tsai C.-H., Kuo Y.-Y., et al. Prognostic Relevance of Adult Acute Myeloid Leukemia Patients According to the 2022 European Leukemianet Risk Stratification. Blood. 2022;140 (Suppl 1):130–1. DOI: 10.1182/blood-2022-168522.

9. Batzir N.A., Shohat M., Maya I. Chromosomal Microarray Analysis (CMA) a Clinical Diagnostic Tool in the Prenatal and Postnatal Settings. Pediatr Endocrinol Rev. 2015;13(1):448–54.

10. Zhang C., Cerveira E., Romanovitch M., et al. Array-Based Comparative Genomic Hybridization (aCGH). In 2017. P. 167–79. DOI: 10.1007/978-1-4939-6703-2_15.

11. Kishtagari A., Levine R.L., Viny A.D. Driver mutations in acute myeloid leukemia. Curr Opin Hematol. 2020;27(2):49–57. DOI: 10.1097/MOH.0000000000000567.

12. Arber D.A., Orazi A., Hasserjian R., et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. DOI: 10.1182/blood-2016-03-643544.

13. Barton DE. DNA Prep for Eukaryotic Cells (Macrophages) [electronic forum post]. BioNet Methods and Reagents. 1995 Jul. http://www.bio.net/bionet/mm/methods-and-reagents/1995-July/031231.html

14. OMIM. Baltimore: McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University; 2025. https://omim.org/

15. International Society for Chromosomal Analysis (ISCA). ISCA Genomic Resources. ClinGen; 2025. https://www.clinicalgenome.org/affiliation/50018/

16. Voisin D, et al. DECIPHER v11.32: Mapping the clinical genome. Wellcome Sanger Institute; 2025. https://www.deciphergenomics.org/

17. MacDonald JR, Ziman A, Xu J, et al. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986-92. Available from: http://dgv.tcag.ca/ [updated Jun 18, 2025; accessed Jun 18, 2025]. DOI: 10.1093/nar/gkt1180.

18. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–7. https://www.ncbi.nlm.nih.gov/clinvar/. DOI: 10.1093/nar/gkx1153.

19. Chakravarty D, Gao J, Phillips SM, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;1:PO.17.00011. https://www.oncokb.org/. DOI: 10.1200/PO.17.00011.

20. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1–33. https://www.genecards.org/. DOI: 10.1002/cpbi.5.

21. Franklin by Genoox. Palo Alto (CA): Genoox; 2025. https://franklin.genoox.com/

22. Hernández-Sánchez A., González T., Sobas M., et al. Rearrangements involving 11q23.3/KMT2A in adult AML: mutational landscape and prognostic implications — a HARMONY study. Leukemia. 2024;38(9):1929–37. DOI: 10.1038/s41375-024-02333-4.

23. Lacoste S.A., Gagnon V., Béliveau F., et al. Unveiling the Complexity of KMT2A Rearrangements in Acute Myeloid Leukemias with Optical Genome Mapping. Cancers. 2024;16(24). DOI: 10.3390/cancers16244171.

24. Larson J.K., Hunter-Schlichting D.N., Crowgey E.L., et al. KMT2A-D pathogenicity, prevalence, and variation according to a population database. Cancer Med. 2023;12(6):7234–45. DOI: 10.1002/cam4.5443.

25. Guarnera L., D’Addona M., Bravo-Perez C., et al. KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic Perspectives. Int J Mol Sci. 2024;25(16). DOI: 10.3390/ijms25169023.

26. Tsai H.K., Gibson C.J., Murdock H.M., et al. Allelic complexity of KMT2A partial tandem duplications in acute myeloid leukemia and myelodysplastic syndromes. Blood Adv. 2022;6(14):4236–40. DOI: 10.1182/bloodadvances.2022007613.

27. Ye W., Ma M., Wu X., et al. Prognostic significance of KMT2A- PTD in patients with acute myeloid leukaemia: a systematic review and meta-analysis. BMJ Open. 2023;13(2):e062376. DOI: 10.1136/bmjopen-2022-062376.

28. Awada H., Mustafa Ali M.K., Thapa B., et al. A Focus on Intermediate-Risk Acute Myeloid Leukemia: Sub-Classification Updates and Therapeutic Challenges. Cancers. 2022;14(17). DOI: 10.3390/cancers14174166.

29. Kitamura T., Inoue D., Okochi-Watanabe N., et al. The molecular basis of myeloid malignancies. Proc Japan Acad Ser B Phys Biol Sci. 2014;90(10):389–404. DOI: 10.2183/PJAB.90.389.

30. Yohe S. Molecular Genetic Markers in Acute Myeloid Leukemia. J Clin Med. 2015;4(3):460–78. DOI: 10.3390/jcm4030460.

31. Jan M., Ebert B.L., Jaiswal S. Clonal hematopoiesis. Semin Hematol. 2017;54(1):43–50. DOI: 10.1053/j.seminhematol.2016.10.002.

32. Kashlakova A.I., Biderman B. V., Parovichnikova E.N. Clonal hematopoiesis and acute myeloid leukemia. Oncogematologiya. 2023;18(3):92–101 (In Russian). DOI: 10.17650/1818-8346-2023-18-3-92-101.

33. Sportoletti P., Sorcini D., Falini B. BCOR gene alterations in hematologic diseases. Blood. 2021;138(24):2455–68. DOI: 10.1182/blood.2021010958.

34. Jaiswal S., Ebert B.L. Clonal hematopoiesis in human aging and disease. Science (80- ). 2019;366(6465). DOI: 10.1126/science.aan4673.

35. Grove C.S., Vassiliou G.S. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech. 2014;7(8):941–51. DOI: 10.1242/dmm.015974.

36. Tsai S.-C., Shih L.-Y., Liang S.-T., et al. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes. Clin Cancer Res. 2015;21(15):3541– 51. DOI: 10.1158/1078-0432.CCR-14-2203.

37. Allen C., Hills R.K., Lamb K., et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–901. DOI: 10.1038/leu.2013.186.

38. Uckelmann H.J., Haarer E.L., Takeda R., et al. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov. 2023;13(3):746–65. DOI: 10.1158/2159-8290.CD-22-0366.


Review

For citations:


Bessmertnyy D.K., Starchenko S.E., Risinskaya N.V., Kulikov S.M., Chabaeva U.A., Surimova V.A., Ponamoreva A.S., Kanivets I.V., Fidarova Z.T., Lukianova I.A., Kashlakova A.I., Romanyuk E.V., Balaeva N.I., Troitskaya V.V., Sudarikov A.B., Parovichnikova E.N. Structural aberrations of genes associated with leukemogenesis in patients with acute myeloid leukemia of intermediate prognosis. Russian journal of hematology and transfusiology. 2025;70(4):465-477. (In Russ.) https://doi.org/10.35754/0234-5730-2025-70-4-465-477

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)