Preview

Russian journal of hematology and transfusiology

Advanced search

Efficiency of induction therapy in primary patients with multiple myeloma depends on c-MYC gene expression at the debut of disease

https://doi.org/10.18821/0234-5730-2016-61-1-10-16

Abstract

The relationship between the type of antitumor response to induction therapy in patients with multiple myeloma (MM) and/or monoclonal gammopathy of undetermined significance (MGUS) and the level of c-MYC gene expression at the moment of disease diagnosis is studied. The expression of c-MYC in bone marrow cells was evaluated by multiplex RT-PCR. The mean levels of c-MYC gene expression in CD138+ cells of patients with MM/MGOO are higher than in donors (p = 0.011). Relationship between the depth of antitumor response and level of C-myc expression in CD138+ cells is detected.

About the Authors

M. V. Nareiko
National Research Center for Hematology
Russian Federation

Nareyko Mariya V., MD, hematologist, post graduate of Clinical Research Department of High-Dose Chemotherapy Hemoblastosis, Depression of Hematopoiesis and Bone Marrow Transplantation

Moscow, 125167



L. P. Mendeleeva
National Research Center for Hematology
Russian Federation
Moscow, 125167


V. L. Surin
National Research Center for Hematology
Russian Federation
Moscow, 125167


E. Yu. Demidova
National Research Center for Hematology
Russian Federation
Moscow, 125167


O. S. Pokrovskaya
National Research Center for Hematology
Russian Federation
Moscow, 125167


L. A. Kuzmina
National Research Center for Hematology
Russian Federation
Moscow, 125167


E. O. Gribanova
National Research Center for Hematology
Russian Federation
Moscow, 125167


I. V. Galtseva
National Research Center for Hematology
Russian Federation

Scopus Author ID: 6506926619

Moscow, 125167



E. S. Urnova
National Research Center for Hematology
Russian Federation
Moscow, 125167


M. Yu. Drokov
National Research Center for Hematology
Russian Federation
Scopus Author ID 48661939800Moscow, 125167


M. V. Firsova
National Research Center for Hematology
Russian Federation
Moscow, 125167


M. V. Solovyov
National Research Center for Hematology
Russian Federation
Moscow, 125167


E. A. Makunina
National Research Center for Hematology
Russian Federation
Moscow, 125167


E. N. Parovichnikova
National Research Center for Hematology
Russian Federation
Moscow, 125167


V. G. Savchenko
National Research Center for Hematology
Russian Federation
Moscow, 125167


References

1. Paszekova H., Kryukov F., Kubiczkova L., Hajek R., Sevcikova S. High-Risk Multiple Myeloma: Different defnitions, different outcomes? Clin. Lymphoma Myeloma Leuk. 2014; 14(1): 24–30. doi:10.1016/j.clml.2013.09.004.

2. Bergsagel P.L., Chesi M.V. Molecular classifcation and risk stratifcation of myeloma. Hematol. Oncol. 2013; 31(Suppl.1): 38–41. doi: 10.1002/hon.2065.

3. Morgan G.J., Walker B.A., Davies F.E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer. 2012; 12(12): 335–48. doi: 10.1038/nrc3257.

4. Lorbach R.B., His E.D., Dogan A., Fend F. Plasma cell myeloma and related neoplasms. Am. J. Clin. Pathol. 2011; 136(2): 168–82. doi: 10.1309/AJCPENJ68FFBRIYB.

5. Van Wier S., Braggio E., Baker A., Ahmann G., Levy J., Carpten J.D., et al. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Hematologica. 2013; 98(10): 1586–92. doi: 10.3324/haematol.2012.081083.

6. Smith A., Wisloff F., Samson D.; UK Myeloma Forum; Nordic Myeloma Study Group; British Committee for Standards in Haematology. Guidelines on the diagnosis and management of multiple myeloma, 2005. Br. J. Haematol. 2006; 132(4): 410–51.

7. Bhatia K.G., Cherney B.W., Huppi K., Magrath I.T., Cossman J., Sausville E., et al. A deletion linked to a poly (ADP-ribose) polymerase gene on chromosome 13q33-qter occurs frequently in the normal black population as well as in multiple tumor DNA. Cancer Res. 1990; 50(17): 5406–13.

8. Davidov M.I., Aksel E.M. The incidence of malignant neoplasms of the population of Russia and the CIS in 2007. Journal of N.N. Blokhin Russian Cancer Research Center RAMS (Vestnik RONC im. N.N. Blokhina). 2009; 20(3): 52–90. (in Russian)

9. Gonzalez G., van der Burg M., Garcia-Sanz R., Fenton J.A., Langerak A.W., Gonzalez M., et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007; 110(9): 3112–21.

10. Bergsagel P.L., Kuehl W.M., Zhan F., Sawyer J., Barlogie B., Shaughnessy J.Jr.. CyclinD dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005; 106(1): 296–303.

11. Lwin T., Zhao X., Cheng F., Zhang X., Huang A., Shah B., et al. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplifcation loop in non-Hodgkin B cell lymphomas. J. Clin. Invest. 2013; 123(11): 4612–26.

12. Terunuma A., Pulturi N., Mishra P., Mathe E.A., Dorsey T.H., Yi M., et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 2014; 124(1): 398–12. doi: 10.1172/JCI71180.

13. Affer M., Chesi M., Chen W.D., Keats J.J., Demchenko Y.N., Tamizhmani K., et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia. 2014; 28(8): 1725–35. doi: 10.1038/leu.2014.70.

14. Delgado M.D., Leon J. Myc roles in hematopoiesis and leukemia. Gen. Cancer. 2010; 1(6): 605–16. doi: 10.1177/1947601910377495.

15. Janz S. Myc translocations in B cell and plasma cell neoplasms. DNA Repair. 2006; 5(9–10): 1213–24.

16. Muller R., Bravo R., Burckhardt J., Curran T. Induction of c-fos gene and protein by growth factor precedes activation of c-myc. Nature. 1984; 312(5996): 716–20.

17. Kabilova Т.О., Chernogolovskaya E.L. Myc-family oncogenes as therapeutic targets. Bulletin of Siberian medicine (Bulleten sibirskoy meditsine). 2008; (Issue 3): 11–26. (in Russian)

18. Grand C.L., Powell T.J., Nagle R.B., Bearss D.J., Tye D., Gleason-Guzman M., Hurley L.H. Mutations in the G-quadruplex silencer element and their relationship to c-MYC overexpression, NM23 repression, and therapeutic rescue. Proc. Nat. Acad. Sci. USA. 2004; 101(16): 6140–5.

19. Taniguchi M., Fujiwara K., Nakai Y., Ozaki T., Koshikawa N., Toshio K. et al. Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole–imidazole polyamide, which targets an E-box motif. FEBS Open Bio. 2014;13(4): 328–34. doi: 10.1016/j.fob.2014.03.004.

20. Chng W.J., Huang G.F., Chung T.H., Ng S.B., Gonzalez-Paz N., Troska-Price T., et al. Clinical and biological implications of MYC activation: a common difference between MGUS and Newly diagnosed multiple myeloma. Leukemia. 2011; 25(6): 1026–35. doi: 10.1038/leu.2011.53.

21. Zhan F., Hardin J., Kordsmeier B., Bumm K., Zheng M., Tian E., et al. Global gene expression profling of multiple myeloma, monoclonal gammopathy of undetermined signifcance, and normal bone marrow plasma cell. Blood. 2002; 99(5): 1745–57.

22. Zhan F., Barlogie B., Arzoumanian V., Huang Y., Williams D.R., Hollmig K., et al. Gene expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007; 109(4): 1692–700.

23. Klein U., Tu Y., Stolovitzky G.A., Keller J.L., Haddad J.Jr., Miljkovic V., et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Nat. Acad. Sci. USA. 2003; 100(5): 2639–44.

24. Zhan F., Tian E., Bumm K., Smith R., Barlogie B., Shaughnessy J.Jr. Gene expression profling of human plasma cell differentiation and classifcation of multiple myeloma based on similarities to distinct stages of late-stage-B-cell development. Blood. 2003; 101(3): 1128–40.

25. Jain M., Arvanitis C., Chu K., Dewey W., Leonhardt E., Trinh M., et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002; 297(5578): 102–4.

26. Chesi M., Robbiani D. F., Sebag M., Chng W.J., Affer M., Tiedemann R., et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of postgerminal center malignancies. Cancer Cell. 2008; 13(2): 167–80. doi: 10.1016/j.ccr.2008.01.007.

27. Pourdehnad M., Truitt M.L., Siddiqi I.N., Ducker G.S., Shokat K.M., Ruggero D. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc. Nat. Acad. Sci. USA. 2013; 110(2): 11988–93. doi: 10.1073/pnas.1310230110.

28. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7): 1–12.

29. Rajkumar V., Dimopoulos M.A., Palumbo A., Blade J., Merlini G., Mateos M.V., et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15(12): e538–48. doi: 10.1016/S1470-2045(14)70442-5.

30. Durie B.G., Salmon S.E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975; 36(3): 842–54.

31. Durie B.G., Harousseau J.L., Miguel J.S., Blade J., Barlogie B., Anderson K., et al. International Myeloma Working Group. International uniform response criteria for multiple myeloma. Leukemia. 2006; 20(9): 1467–73.

32. Chomczynski P., Sacchi N. The single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162(1): 156–9.

33. Holien T., Vatsveen T.K., Hella H., Rampa C., Brede G., Groseth L.A., et al. Bone morphogenetic proteins induce apoptosis in multiple myeloma cells by Smad-dependent repression of MYC. Leukemia. 2012; 26(5): 1073–80. doi: 10.1038/leu.2011.263.


Review

For citations:


Nareiko M.V., Mendeleeva L.P., Surin V.L., Demidova E.Yu., Pokrovskaya O.S., Kuzmina L.A., Gribanova E.O., Galtseva I.V., Urnova E.S., Drokov M.Yu., Firsova M.V., Solovyov M.V., Makunina E.A., Parovichnikova E.N., Savchenko V.G. Efficiency of induction therapy in primary patients with multiple myeloma depends on c-MYC gene expression at the debut of disease. Russian journal of hematology and transfusiology. 2016;61(1):10-16. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-1-10-16

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)