Preview

Russian journal of hematology and transfusiology

Advanced search

PILOT RESEARCH OF A GENETIC PREDISPOSITION FOR CLINICAL MANIFESTATIONS OF ACUTE INTERMITTENT PORPHYRIA

https://doi.org/10.35754/0234-5730-2019-64-2-123-137

Abstract

Introduction. Acute intermittent porphyria (AIP) is the most common and severe form of acute hepatic porphyria. AIP is caused by a deficiency in the third enzyme of the heme biosynthesis system — hydroxymethylbilanine synthase (HMBS) — and has a dominant inheritance type. However, the probability of the clinical manifestation of this condition in carriers of the mutation in the HMBS gene constitutes only 10–20 %. Thi s suggests that the presence of such a mutation can be a necessary but not a sufficient condition for the development of the disease.

Aim. To search for additional genetic factors, which determine the clinical penetrance of AIP using Whole-Exome Sequencing.

Materials and methods. Sequencing of the whole exome was performed using a TruSeqExomeLibraryPrepkit (Illumina) kit by an Illumina HiSeq4000 instrument for 6 women with API with known mutations in the HMBS gene. All the patients suffered from a severe form of the disease. As a reference, a version of the hg19 human genome was used.

Results. No common mutations were found in the examined patients. However, in each patient, functional variations were found in the genes related to detoxification systems, regulation of the heme biosynthesis cascade and expression of delta-aminolevulinic acid synthase (ALAS1) and in genes of proteins regulating nervous system. These variations require further study involving an extended number of patients with AIP manifestations and their relatives, who are asymptomatic carriers of disorders in the gene HMBS.

Conclusions. The results obtained have allowed us to formulate a hypothesis about a possible role of genetic defects in the penetrance of AIP, which determine the development of other neurological pathologies. This is evidenced by the presence of gene pathogenic variations in 5 out of 6 examined patients, defects in which are associated with hereditary myasthenia and muscle atrophy.

About the Authors

O. S. Pshenichnikova
National Research Center for Hematology
Russian Federation
Olesya S. Pshenichnikova, Leading Specialist, Laboratory of Genetic Engineering


M. V. Goncharova
National Research Center for Hematology
Russian Federation
Maria V. Goncharova, Leading Specialist, Laboratory of Genetic Engineering


Y. S. Pustovoit
National Research Center for Hematology
Russian Federation
Yaroslav S. Pustovoit, Senior Researcher, Department of Chemotherapy of Hematological Diseases and Intensive Care


I. V. Karpova
National Research Center for Hematology
Russian Federation
Irina V. Karpova, Head of the Biochemical Group, Central Clinical Diagnostic Laboratory


V. L. Surin
National Research Center for Hematology
Russian Federation
Vadim L. Surin, Senior Researcher, Laboratory of Genetic Engineering


References

1. Tsiftsoglou A., Tsamadou A., Papadopoulou L. Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacology and Therapeutics. 2006; 111: 327–45. DOI: 10.1016/j.pharmthera.2005.10.017

2. Degenhardt T., Väisänen S., Rakhshandehroo M., et al. Peroxisome proliferatoractivated receptor α controls hepatic heme biosynthesis through ALAS1. J. Mol. Biol. 2009; 388: 225–38. DOI: 10.1016/j.jmb.2009.03.024

3. Layer G., Reichelt J., Jahn D., Heinz D.W. Structure and function of enzymes in heme biosynthesis. Protein Science. 2010; 19: 1137–61. DOI: 10.1002/pro.405

4. Kubota Y., Nomura K., Katoh Y., et al. Novel mechanisms for heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of heme biosynthesis. J. Biol. Chem. 2016; 291: 20516–29. DOI: 10.1074/jbc. M116.719161

5. Lim H.W., Murphy G.M. The porphyrias. Clin. In Dermatol. 1996; 14: 375–87.

6. Shoolingin-Jordan P.M. Structure and mechanism of enzymes involved in the assembly of the tetrapyrrole macrocycle. Biochem. Soc. Trans. 1998; 26: 326–36.

7. Karim Z., Lyoumi S., Nicolas G., et al. Porphyrias: A 2015 update. Clin. Res. Hepatol. Gastroenterol. 2015; 39(4): 412–25. DOI: 10.1016/j.clinre.2015.05.009

8. Stein P.E., Badminton M.N., Rees D.C. Update review of the acute porphyrias. Br. J. Haematol. 2017; 176(4): 527–38. DOI: 10.1111 / bjh.14459

9. Ramanujam V.-M.S., Anderson K.E. Porphyria Diagnostics — Part 1: A brief overview of the porphyrias. Curr. Protoc. Hum. Genet. 2015; 86: 17.20.1–26. DOI: 10.1002 / 0471142905.hg1720s86

10. Bissell D.M., Anderson K.E., Bonkovsky H.L. Porphyria. N. Engl. J. Med. 2017; 377(9): 862–72. DOI: 10.1056/NEJMra1608634

11. Elder G.H., Hift R.J., Meissner P.N. The acute porphyrias. Lancet. 1997; 349: 1613–7.

12. Grandchamp B., De Verneuil H., Beaumont C., et al. Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur. J. Biochem. 1987; 162(1): 105–10.

13. Chen B., Solis-Villa C., Hakenberg J., et al. Acute Intermittent Porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Hum. Mutat. 2016; 37(11): 1215–22. DOI: 10.1002/humu.23067

14. Lenglet H., Schmitt C., Grange T., et al. From a dominant to an oligogenic model of inheritance with environmental modifiers in Acute Intermittent Porphyria. Hum. Mol. Genet. 2018; 27(7): 1164–73. DOI: 10.1093 / hmg / ddy030

15. Puy H., Gouya L., Deybach J.-C. Porphyrias. Lancet. 2010; 375: 924–37. DOI: 10.1016 / S0140-6736 (09) 61925-5

16. Yang C.-C., Kuo H.-C., You H.-L., et al. HMBS mutations in Chinese patients with acute intermittent porphyria. Ann. Hum. Genet. 2008; 72: 683–6. DOI: 10.1111 / j.1469-1809.2008.00463.x

17. Surin V. L., Luchinina YU. A., Selivanova D. S., et al. Molecular genetic study of acute intermittent porphyria in Russia: mutation analysis and functional polymorphism search in porphobilinogen deaminase gene. Genetika. 2010; 46(4): 1–13 (In Russian).

18. Pustovojt Ya.S., Surin V.L., Karpova I.V., et al. Acute intermittent porphyria in Russia: diagnostics aspects. Meditsinskaya genetika. 2004; 3(1): 18–35 (In Russian).

19. Gouya L., Puy H., Robreau A.-M., et al. Modulation of penetrance by the wild-type allele in dominantly inherited erythropoietic protoporphyria and acute hepatic porphyrias. Hum. Genet. 2004; 114: 256–62. DOI: 10.1007/s00439- 003-1059-5

20. Luchinina Yu.A., Goncharova M.V., Surin V.L., et al. Association of allelic variants of genes of detoxification system with clinical presentation of acute intermittent porphyria. Gematologiya i transfuiologiya. 2016; 61(3): 156–60 (In Russian).

21. Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols. 2009; 4(7): 1073–81. DOI: 10.1038/nprot.2009.86

22. Adzhubei I.A., Schmidt S., Peshkin L., et al. A method and server for predicting damaging missense mutations. Nature Methods. 2010; 7(4): 248–9. DOI: 10.1038/nmeth0410-248

23. Schwarz J.M., Rödelsperger C., Schuelke M., Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods. 2010; 7(8): 575–6. DOI: 10.1038/nmeth0810-575

24. Choi Y., Sims G.E., Murphy S., et al. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE. 2012; 7(10): e46688. DOI: 10.1371/ journal.pone.0046688

25. Thusberg J., Olatubosun A., Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Human Mutation. 2011; 32(4): 358–68. DOI: 10.1002/humu.21445

26. Wu J., Jiang R. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. The Scientific World Journal. 2013; 2013: 10 pages. DOI: 10.1155/2013/675851

27. Dong C., Wei P., Jian X., et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Human Molecular Genetics. 2015; 24(8): 2125–37. DOI: 10.1093/hmg/ddu733

28. Kanazawa I. Molecular pathology of dentatorubral-pallidoluysian atrophy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999; 354(1386): 1069–74.

29. Koide R., Kobayashi S., Shimohata T., et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 1999; 8(11): 2047–53.

30. Sánchez I., Balagué E., Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway that is altered in Spinocerebellar ataxia type 1 (SCA1). Hum. Mol. Genet. 2016; 25(18): 4021–40. DOI: 10.1093/hmg/ddw242

31. Jones M.A., Rhodenizer D., da Silva C., et al. Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing. Mol. Genet. Metab. 2013; 110(1–2): 78–85. DOI: 10.1016/j.ymgme.2013.05.012

32. Rodríguez Cruz P.M., Palace J., Beeson D. The neuromuscular junction and wide heterogeneity of Congenital myasthenic syndromes. Int. J. Mol. Sci. 2018; 19(6): 1677. DOI: 10.3390/ijms19061677

33. Thunell S. (Far) Outside the box: genomic approach to acute porphyria. Physiol. Res. 2006; 55: 43–66.

34. Jover R., Hoffmann F., Scheffler-Koch V., Lindberg R.L.P. Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. Eur. J. Biochem. 2000; 267: 7128–37.

35. Podvinec M., Handschin C., Looser R., Meyer U.A. Identification of the xenosensors regulating human 5-aminolevulinate synthase. PNAS. 2004; 101(24): 9127–32. DOI: 10,1073 / pnas.0401845101

36. Handschin C., Lin J., Rhee J., et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell. 2005; 122: 505–15. DOI: 10.1016/j.cell.2005.06.040

37. Nilsson R., Schultz I.J., Pierce E.L., et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 2009; 10(2): 119–30. DOI: 10.1016/j.cmet.2009.06.012

38. Ju Y., Mizutani T., Imamichi Y., et al. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells. Endocrinology. 2012; 153(11): 5522–34. DOI: 10.1210 / en.2012- 1334

39. Tian Q., Li T., Hou W., Zheng J., et al. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J. Biol. Chem. 2011; 286: 26424–30. DOI: 10.1074/jbc. M110.215772

40. Fraser D.J., Podvinec M., Kaufmann M.R., Meyer U.A. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR). J. Biol. Chem. 2002; 277: 34717–26. DOI: 10.1074/jbc.M204699200

41. Fraser D.J., Zumsteg A., Meyer U.A. Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J. Biol. Chem. 2003; 278: 39392–401. DOI: 10.1074/jbc.M306148200

42. Sueyoshi T., Negishi M. Phenobarbital response elements of cytochrome p450 genes and nuclear receptors. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 123–43.

43. Pelkonen O., Mäenpää J., Taavitsainen P., et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998; 28(12): 1203–53.

44. Pelkonen O., Rautio A., Raunio H., Pasanen M. CYP2A6: a human coumarin 7-hydroxylase. Toxicology. 2000; 144: 139–47.

45. Nebert D.W., Wikvall K., Miller W.L. 2013 Human cytochromes P450 in health and disease. Phil. Trans. R. Soc. B. 2013; 368(1612): 20120431 DOI: 10.1098/rstb.2012.0431

46. Laroche-Clary A., Le Morvan V., Yamori T., Robert J. Cytochrome P450 1B1 gene polymorphisms as predictors of anticancer drug activity: studies with in vitro models. Mol. Cancer Ther. 2010; 9: 3315–21. DOI: 10.1158/1535-7163.MCT10-0673

47. Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics. 2013; 138: 103–41.

48. Lang T., Klein K., Fischer J. et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics. 2001; 11: 399–415.

49. Lamba V., Lamba J., Yasuda K., et al. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J. Pharmacol. Exp. Ther. 2003; 307: 906–22.

50. Desta Z., Saussele T., Ward B., et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007; 8: 547–58.

51. Jover R., Moya M., Gómez-Lechón M.J. Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha. Curr. Drug Metab. 2009; 10: 508–19. DOI: 10.2174/138920009788898000

52. López-García M.A., Feria-Romero I.A., Serrano H., et al. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol. Rep. 2017; 69(3): 504–11. DOI: 10.1016/j.pharep.2017.01.007

53. Sumner C.J., d’Ydewalle C., Wooley J., et al. A dominant mutation in FBXO38 causes distal spinal muscular atrophy with calf predominance. Am J Hum Genet. 2013; 93(5): 976–83. DOI: 10.1016/j.ajhg.2013.10.006

54. Müller J.S., Herczegfalvi A., Vilchez J.J., et al. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain. 2007; 130(Pt 6): 1497–506. DOI: 10.1093/brain/awm068


Review

For citations:


Pshenichnikova O.S., Goncharova M.V., Pustovoit Y.S., Karpova I.V., Surin V.L. PILOT RESEARCH OF A GENETIC PREDISPOSITION FOR CLINICAL MANIFESTATIONS OF ACUTE INTERMITTENT PORPHYRIA. Russian journal of hematology and transfusiology. 2019;64(2):123-137. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-2-123-137

Views: 3730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)