PHENOTYPIC HETEROGENEITY OF NEUTROPHILS: NEW ANTIMICROBIC CHARACTERISTICS AND DIAGNOSTIC TECHNOLOGIES
https://doi.org/10.35754/0234-5730-2019-64-2-211-221
Abstract
Introduction. Neutrophils are the most numerous subpopulation of leukocytes circulating in the blood; they constitute the first line of defence of the innate link of the immune system.
Aim. To generalize basic concepts about phenotypic and functional heterogeneity of neutrophils.
General findings. According to contemporary concepts, this type of blood cells performs not only antimicrobial functions, but also participates in capture and destruction of various microorganisms, including such processes as phagocytosis and intracellular degradation, degranulation and formation of extracellular neutrophilic traps after the detection of microorganisms. Neutrophils are considered to be a phenotypically heterogeneous pool of blood cells featuring a significant functional variability. Under pathological conditions, they can differentiate into discrete subpopulations with va rious phenotypic and functional characteristics. They are capable of interaction with macrophages, natural killers, dendritic and mesenchymal stem cells, B and T lymphocytes or platelets. In addition, neutrophils exhibit vector properties with respect to cancerous tumours. They possess a high morphological and functional variability, being modulators of both inflammation and active triggers of immune responses. A search for molecular markers able to efficiently differentiate neutrophil phenotypes and establish the degree of their diagnostic specificity for various pathologies is of a particular importance.
Keywords
About the Authors
B. G. AndryukovRussian Federation
Boris G. Andriukov*, Honoured Doctor of the Russian Federation, Dr. Sci. (Med.), Leading Researcher, Laboratory of Molecular Microbiology
Prof., Department of Fundamental Sciences
tel.: +7(924)230-46-47; 690087, Vladivostok, Selskaya str., 1.
V. D. Bogdanova
Russian Federation
Valeriya D. Bogdanova, Master’s Degree Student in Medical Biochemistry
I. N. Lyapun
Russian Federation
Irina N. Lyapun, Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Microbiology
References
1. de Oliveira S., Rosowski E.E., Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nature Reviews Immunology. 2016; 16(6): 378. DOI: 10.1038/nri.2016.49
2. Wang J., Hossain M., Thanabalasuriar A., et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017; 358(6359): 111–6. DOI: 10.1126/science.aam9690
3. Jones H. R., Robb C. T., Perretti M., et al. The role of neutrophils in inflammation resolution. Seminars in immunology. Academic Press. 2016; 289(2): 137–45. DOI: 10.1016/j.smim.2016.03.007
4. Kaur M., Singh D. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. Journal of Pharmacology and Experimental Therapeutics. 2013; 347(1): 173–80. DOI: 10.1124/jpet.112.201855
5. Andryukov B.G., Somova L.M., Drobot Ye.I., Matosova Ye.V. Antimicrobial strategies of neutrophils in infectious diseases. Klinicheskaya labjratornaya diagnоstika. 2016; 12(61): 825–33 (In Rissian). DOI: 10.18821/0869-2084- 2016-61-12-825-833
6. Wirths S., Stefanie Bugl S., Kopp H.-G. Steady-state neutrophil homeostasis is a demand-driven process. Cell Cycle. 2013; 12(5): 709–10. DOI: 10.4161/cc.23859
7. Cain D.W., Ueda Y., Holl T.M., et al. A comparison of “steady-state” and “emergency” granulopoiesis: evidence of a single pathway for neutrophil production. The Journal of Immunology, 2009; 182 (1): 87–95.
8. Cowland J.B., Borregaard N. Granulopoiesis and granules of human neutrophils. Immunological reviews. 2016; 273(1): 11–28. DOI: 10.1111/imr.12440/
9. Kanamaru R., Ohzawa H., Miyato H., et al. Neutrophil Extracellular Traps Generated by Low Density Neutrophils Obtained from Peritoneal Lavage Fluid Mediate Tumor Cell Growth and Attachment. J Vis Exp. 2018; 138. DOI: 10.3791/58201
10. Witko-Sarsat V., Pederzoli-Ribeil M., Hirsch E., et. al. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol. 2011; 32: 117–24. DOI: 10.1016/j.it.2011.01.001
11. Luo D., McGettrick H.M., Stone P.C., et al. The roles of Integrins of Human Neutrophils after their migration through endothelium into intestinal matrix. PLOS One. 2015; 10(2): e0118593. DOI: 10.1371/journal.pone.0118593
12. Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Science’s STKE. 2007; 2007(379): pe11. DOI: 10.1126/stke.3792007pe11
13. Marini O., Costa S., Bevilacqua D., et al. Mature CD10+ and immature CD10-neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood. 2016; 04: 713206. DOI: 10.1182/blood-2016-04-713206
14. Dopico X. C., Evangelou M., Ferreira R. C., et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nature communications. 2015; 6: 7000. DOI: 10.1038/ncomms8000
15. Kim M. H., Yang D., Kim M., et al. A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Scientific reports. 2017; 7: 39804. DOI: 10.1038/srep39804
16. Garlichs C.D., Eskafi S., Cicha I., et al. Delay of neutrophil apoptosis in acute coronary syndromes. Journal of leukocyte biology. 2004; 75(5): 828–35. DOI: 10.1189/jlb.0703358
17. Summers C., Singh N. R., White J. F., et al. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax. 2014; thoraxjnl-2013-204742. DOI: 10.1136/ thoraxjnl-2013-204742
18. Matosova Е.V., Andryukov B.G. Morphofunctional characteristics of protective mechanisms of neutrophils against bacterial infections and their contribution in pathogenesis of pro-inflammatory. Gematologiya i transfuziologiya. 2017; 62(4): 223–9 (In Russian). DOI: 10.18821/0234-5730-2017-62-4-223-229
19. Jorgensen I., Rayamajhi M., Miao E.A. Programmed cell death as a defence against infection. Nature reviews immunology. 2017; 17(3): 151. DOI: 10.1038/ nri.2016.147
20. Jorgensen I., Lopez J.P., Laufer S.A., et al. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. European journal of immunology. 2016; 46(12): 2761–6. DOI: 10.1002/ eji.201646647
21. Rodriguez F.M., Novak I.T.C. What about the neutrophil’s phenotypes? Hematol Med Oncol. 2017; 2: 1–6. DOI: 10.15761/HMO.1000130
22. Adrover J.M., Nicolás-Ávila J.A., Hidalgo A. Aging: a temporal dimension for neutrophils. Trends Immunol. 2016; 37: 334–45. DOI: 10.1016/j.it.2016.03.005
23. Brinkmann V., Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012; 198(5): 773–83. DOI: 10.1083/ jcb.201203170
24. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood. 2016 127:2173-2181 DOI: 10.1182/blood-2016-01-688887
25. Horckmans M., Ring L., Duchene J., et al. Neutrophils orchestrate postmyocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017; 38: 187–97. DOI: 10.1093/eurheartj/ehw002
26. Hellebrekers P., Vrisekoop N., Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest. 2018; 48 Suppl 2: e12943. DOI: 10.1111/ eci.12943
27. Sagiv J.Y., Voels S., Granot Z. Isolation and Characterization of Low- vs HighDensity Neutrophils in Cancer. Methods Mol Biol. 2016; 1458: 179–93. DOI: 10.1007/978-1-4939-3801-8_13
28. Kuhns D.B., Priel D.A.L., Chu J., et al. Isolation and Functional Analysis of Human Neutrophils. Curr Protoc Immunol. 2015; 111: 7.23.1–16. DOI: 10.1002/0471142735.im0723s111
29. Deniset J.F., Kubes P. Neutrophil heterogeneity: Bona fide subsets or polarization states? J Leukoc Biol. 2018; 103(5): 829–38. DOI: 10.1002/JLB.3RI0917- 361R
30. Mortaz E., Alipoor S.D., Adcock I.M., et al. Update on Neutrophil Function in Severe Inflammation. Front Immunol. 2018; 9: 2171. DOI: 10.3389/ fimmu.2018.02171
31. Bekkering S., Torensma R. Another look at the life of a neutrophil. World J Hematol 2013; 2(2): 44–58. DOI: 10.5315/wjh.v2.i2.44
32. Nesterova I.V., Kolesnikova N.V., Chudilova G.A., et al. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 1. Infekciya i immunitet. 2018; 7(3): 219–30 (In Russian). DOI: 10.15789/2220-7619-2017-3-219- 230
33. Galdiero M. R., Bonavita E., Barajon I., et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013; 218(11): 1402–10. DOI: 10.1016/j.imbio.2013.06.003
34. Lai Guan Ng. Neutrophil: A mobile fertilizer J Exp Med. 2019; 216(1): 4–6. DOI: 10.1084/jem.20182059
35. Mishalian I., Granot Z., Fridlender Z.G. The diversity of circulating neutrophils in cancer. Immunobiology. 2017; 222(1): 82–8. DOI: 10.1016/j. imbio.2016.02.001
36. McCracken J.M., Allen L.A.H. Regulation of Human Neutrophil Apoptosis and Lifespan in Health and Disease. J Cell Death. 2014; 7: 15–23. DOI: 10.4137/ JCD.S11038
37. Je Lin Sieow, Sin Yee Gun, Siew Cheng Wong The Sweet Surrender: How Myeloid Cell Metabolic Plasticity Shapes the Tumor Microenvironment. Front Cell Dev Biol. 2018; 6: 168. DOI: 10.3389/fcell.2018.00168
38. Sionov R.V., Fridlender Z.G., Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2014; 8(3):125–58.
39. Coffelt S.B., Wellenstein M.D., de Visser K.E. Neutrophils in cancer: neutral no more. Nature Reviews Cancer. 2016; 16(7): 431. DOI: 10.1038/nrc.2016.52/
40. Swierczak A., Mouchemore K.A., Hamilton J.A., Anderson R.L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015; 34(4): 735–51. DOI: 10.1007/s10555-015-9594-9
41. Kurashige M., Kohara M., Ohshima K., et al. Origin of cancer-associated fibroblasts and tumor-associated macrophages in humans after sex-mismatched bone marrow transplantation. Commun Biol. 2018; 1: 131.
42. Sawanobori Y., Ueha S., Kurachi M., et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008; 111(12): 5457–66. DOI: 10.1182/blood-2008-01-136895
43. Granot Z., Henke E., Comen E.A., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011; 20(3): 300–14.
44. Shaul M.E., Levy L., Sun J., et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology. 2016; 5(11): e1232221. DOI: 10.1080/2162402X.2016.1232221
45. Skendros P., Mitroulis I., Ritis K. Autophagy in Neutrophils: From Granulopoiesis to Neutrophil Extracellular Traps. Front Cell Dev Biol. 2018; 6: 109.
46. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol. 2018; 9: 113. DOI: 10.3389/fphys.2018.00113
47. Uribe-Querol E., Rosales C. Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res. 2015; 2015: 983698. DOI: 10.1155/2015/983698
48. Sagiv J. Y., Michaeli J., Assi S., et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell reports. 2015; 10(4): 562–73. DOI: 10.1016/j.celrep.2014.12.039
49. Lee W., Ko S.Y., Mohamed M.S., et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 2019; 216(1): 176–94. DOI: 10.1084/jem.20181170
50. Granot Z, Jablonska J. Distinct Functions of Neutrophil in Cancer and Its Regulation. Mediators Inflamm. 2015; 701067. DOI: 10.1155/2015/701067
51. Lopez-Lago M.A., Posner S., Thodima V.J., et al. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene, 2013; 32(14): 1752–60.
52. Hong C.W. Current Understanding in Neutrophil Differentiation and Heterogeneity. Immune Netw. 2017; 17(5): 298–306.
53. Liu Y., Yue Hu, Gu F., et al. Phenotypic and clinical characterization of low density neutrophils in patients with advanced lung adenocarcinoma. Oncotarget. 2017; 8(53): 90969–78. DOI: 10.18632/ oncotarget. 18771
54. Carmona-Rivera C., Kaplan M.J. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin. Immunopathol. 2013; 35: 455–63. DOI: 10.1007/s00281-013-0375-7
55. Wright H. L., Makki F. A., Moots R. J., et al. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signaling. Journal of leukocyte biology. 2017; 101(2): 599–611. DOI: 10.1189/jlb.5A0116-022R.
56. Hallett M. B. The Neutrophil: Cellular Biochemistry and Physiology. CRC Press; 2017.
57. Erpenbeck L., Schön M.P. Neutrophil extracellular traps: protagonists of cancer progression? Oncogene. 2017; 36(18): 2483. DOI: 10.1038/onc.2016.406
58. Porta C., Sica A., Riboldi E. Tumor-associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS J. 2018; 285(4): 717–33. DOI: 10.1111/febs.14288
59. Khadge S., Sharp J.G., McGuire T.R., et al. Immune regulation and anticancer activity by lipid inflammatory mediators. Int Immunopharmacol. 2018; 65: 580–92. DOI: 10.1016/ j. intimp.2018.10.026
Review
For citations:
Andryukov B.G., Bogdanova V.D., Lyapun I.N. PHENOTYPIC HETEROGENEITY OF NEUTROPHILS: NEW ANTIMICROBIC CHARACTERISTICS AND DIAGNOSTIC TECHNOLOGIES. Russian journal of hematology and transfusiology. 2019;64(2):211-221. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-2-211-221