Preview

Russian journal of hematology and transfusiology

Advanced search

CLONE OF PAROXYSMAL NOCTURNAL HAEMOGLOBINURIA AND OTHER PREDICTORS OF THE RESPONSE TO IMMUNOSUPPRESSIVE THERAPY IN PATIENTS WITH IDIOPATHIC APLASTIC ANAEMIA

https://doi.org/10.35754/0234-5730-2019-64-3-342-352

Abstract

Introduction. The pathogenesis of acquired aplastic anaemia (AA) is based on immune-mediated development of bone marrow failure. The absence of clear reasons for the development of immune aggression determines the relevance of investigations aimed at studying genetic disorders in the remaining pool of hematopoietic stem cells, in the hematopoietic niche, as well as mechanisms underlying the failure of immunological tolerance.

Aim. The present literature review describes the most relevant markers used for characterising AA patients on the basis of their possible response to immunosuppressive therapy (IT) and for forming groups being at risk of developing refractoriness and clonal evolution.

General findings. The overall survival probability in patients with AA following program IT is comparable to the results of transplanting allogeneic hematopoietic blood stem cells (allo-HSCT) from a related donor in the first line of therapy. According to current Russian and international recommendations, the tactics for treating AA patients is determined by the patient’s age and the presence of an HLA-identical sibling. Allo-HSCT from a related HLA-identical donor is a method used for treating patients younger than 40 years; however, the possibility of performing allo-HSCT is limited by donor availability. Although the event-free survival probability during IT is inferior to the results of allo-HSCT, IT remains the main treatment method for most patients with AA. In order to minimise adverse outcomes, it is necessary to consider predictors of treatment efficacy along with the likelihood of developing late clonal evolution as early as at the AA diagnosis stage. Patient evaluation and formation of risk groups will facilitate selection of the most optimal treatment approach at the therapy planning stage, which includes either IT combination with thrombopoietin receptor agonists, or a search for an unrelated HLA-compatible donor and timely allo-HSCT. 

About the Authors

Z. T. Fidarova
National Research Center for Hematology
Russian Federation

Cand. Sci. (Med.), Head of the Department of Chemotherapy for Hemoblastoses and Hematopoiesis Depressions with a Day In-patient Facility,

125167, Moscow



A. V. Abramova
National Research Center for Hematology
Russian Federation

MD, Department of High-Dose Intensive Chemotherapy for Hemoblastoses and Haematopoiesis Depressions with a 24-hour In-patient facility, 

125167, Moscow



A. V. Luchkin
National Research Center for Hematology
Russian Federation

MD, Department of High-Dose Intensive Chemotherapy for Hemoblastoses and Haematopoiesis Depressions with a 24-hour In-patient facility, 

125167, Moscow



References

1. Bacigalupo A. Aplastic anemia: pathogenesis and treatment. Hematology Am Soc Hematol Educ Program. 2007: 23–8. DOI: 10.1182/asheducation-2007.1.23

2. Young N.S. Pathophysiologic mechanisms in acquired aplastic anemia. Hematology Am Soc Hematol Educ Program. 2006: 72–7. DOI: 10.1182/asheducation-2006.1.72

3. Zeng Y., Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol. 2015; 180: 361–70. DOI: 10.1111/cei.12605

4. Babushok D.V., Perdigones N., Perin J.C. et al. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet. 2015; 208: 115–28. DOI: 10.1016/j.cancergen.2015.01.007

5. Mikhailova E.A., Fidarova Z.T., Ustinova E.N. et al. Combined immunosuppressive therapy of aplastic anemia: repeated courses of horse antithymocytic globulin. Gematologiya i transfusiologiya. 2014; 59: 11–8 (In Russian).

6. Scheinberg P., Nunez O., Wu C., Young N.S. Treatment of severe aplastic anaemia with combined immunosuppression: anti-thymocyte globulin, ciclosporin and mycophenolate mofetil. Br J Haematol. 2006; 133: 606–11. DOI: 10.1111/j.1365-2141.2006.06085.x

7. Marsh J. Making therapeutic decisions in adults with aplastic anemia. Hematology Am Soc Hematol Educ Program. 2006: 78–85. DOI: 10.1182/asheducation-2006.1.78

8. Scheinberg P., Wu C.O., Nunez O., Young N.S. Long-Term Outcome of Pediatric Patients with Severe Aplastic Anemia Treated with Antithymocyte Globulin and Cyclosporine. J Pediatr. 2008; 153: 814–9. DOI: 10.1016/j.jpeds.2008.06.004

9. Bacigalupo A., Giammarco S., Sica S. et al. Bone marrow transplantation versus immunosuppressive therapy in patients with acquired severe aplastic anemia. Int J Hematol. 2016; 104: 168–74. DOI: 10.1007/s12185-016-2037-8

10. Dufour C., Pillon M., Sociè G. et al. Outcome of aplastic anaemia in children. A study by the severe aplastic anaemia and paediatric disease working parties of the European group blood and bone marrow transplant. Br J Haematol. 2015; 169: 565–73. DOI: 10.1111/bjh.13297

11. Cabannes-Hamy A., Boissel N., Peffault De Latour R. et al. The effect of age in patients with acquired aplastic anaemia treated with immunosuppressive therapy: comparison of Adolescents and Young Adults with children and older adults. Br J Haematol. 2018; 183(5): 766–74. DOI: 10.1111/bjh.15650

12. Yoshida N., Yagasaki H., Hama A. et al. Predicting response to immunosuppressive therapy in childhood aplastic anemia. Haematologica. 2011; 96: 771– 4. DOI: 10.3324/haematol.2010.032805

13. Scheinberg P., Wu C.O., Nunez O., Young N.S. Predicting response to immunosuppressive therapy and survival in severe aplastic anaemia. Br J Haematol. 2009; 144: 206–16. DOI: 10.1111/j.1365-2141.2008.07450.x

14. Zeng W., Chen G., Kajigaya S. et al. Gene expression profi ling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers. Blood. 2004; 103: 325–32. DOI: 10.1182/blood-2003-02-0490

15. Nakao S., Takami A., Takamatsu H. et al. Isolation of a T-cell clone showing HLA-DRB1*0405-restricted cytotoxicity for hematopoietic cells in a patient with aplastic anemia. Blood. 1997; 89: 3691–9.

16. Sugimori C., Yamazaki H., Feng X. et al. Roles of DRB1 *1501 and DRB1 *1502 in the pathogenesis of aplastic anemia. Exp Hematol. 2007; 35: 13–20. DOI: 10.1016/j.exphem.2006.09.002

17. Nakao S., Takami A., Sugimori N. et al. Response to immunosuppressive therapy and an HLA-DRB1 allele in patients with aplastic anaemia: HLA-DRB1*1501 does not predict response to antithymocyte globulin. Br J Haematol. 1996; 92: 155–8.

18. Zeng W., Kajigaya S., Chen G. et al. Transcript profi le of CD4+ and CD8+ T cells from the bone marrow of acquired aplastic anemia patients. Exp Hematol. 2004; 32: 806–14. DOI: 10.1016/j.exphem.2004.06.004

19. Ren J., Hou X.Y., Ma S.H. et al. Elevated expression of CX3C chemokine receptor 1 mediates recruitment of T cells into bone marrow of patients with acquired aplastic anaemia. J Intern Med. 2014; 276: 512–24. DOI: 10.1111/joim.12218

20. De Latour R., Visconte V., Takaku T. et al. Th17 immune responses contribute to the pathophysiology of aplastic anemia. Blood. 2010; 116: 4175–84. DOI: 10.1182/blood-2010-01-266098

21. Gu Y., Hu X., Liu C. et al. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol. 2008; 142: 109–14. DOI: 10.1111/j.1365-2141.2008.07161.x

22. Olshanskaya J.V., Mikhailova E.A., Domracheva E.V. et al. Clonal chromosomal rearrangements in patients with aplastic anemia at the onset of the disease and during transformation. Terapevticheskiy arkhiv. 2006; 78: 31–7 (In Russian).

23. Stanley N., Olson T.S., Babushok D.V. Recent advances in understanding clonal haematopoiesis in aplastic anaemia. Br J Haematol. 2017; 177: 509–25. DOI: 10.1111/bjh.14510

24. Hosokawa K., Katagiri T., Sugimori N. et al. Favorable outcome of patients who have 13q deletion: A suggestion for revision of the WHO «MDS-U» designation. Haematologica. 2012; 97: 1845–9. DOI: 10.3324/haematol.2011.061127

25. Maciejewski J.P., Risitano A., Sloand E.M. et al. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. 2002; 99: 3129–35. DOI: 10.1182/blood.V99.9.3129

26. Sloand E.M., Pfannes L., Chen G. et al. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood. 2007; 109: 2399–405. DOI: 10.1182/blood-2006-01-030643

27. Katagiri T., Sato-Otsubo A., Kashiwase K. et al. Frequent loss of HLA alleles from hematopoietic stem cells in patients with hepatitis-associated aplastic anemia. Blood. 2011; 118 (21): 6601–10. DOI: 10.1182/blood-2011-07-365189

28. Lane A.A., Odejide O., Kopp N. et al. Low frequency clonal mutations recoverable by deep sequencing in patients with aplastic anemia. Leukemia. 2013; 27: 968–71. DOI: 10.1038/leu.2013.30

29. Heuser M., Schlarmann C., Dobbernack V. et al. Genetic characterization of acquired aplastic anemia by targeted sequencing. Haematologica. 2014; 99(9): 165–7. DOI: 10.3324/haematol.2013.101642

30. Yoshizato T., Dumitriu B., Hosokawa K. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015; 373: 35–47. DOI: 10.1056/NEJMoa1414799

31. Kulasekararaj A.G., Jiang J., Smith A.E. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014; 124: 2698–704. DOI: 10.1182/blood-2014-05-574889

32. Tsvetaeva N.V. Paroxysmal Nocturnal Hemoglobinuria Edited by Vorobiev A.I. Moscow: NewDiamed, 2007; 797–805 (In Russian).

33. Parker C.J. The pathophysiology of paroxysmal nocturnal hemoglobinuria. Exp Hematol. 2007; 35: 523–33. DOI: 10.1016/j.exphem.2007.01.046

34. Bessler M., Mason P.J., Hillmen P. et al Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J. 1994; 13: 110–7.

35. Inoue N., Izui-Sarumaru T., Murakami Y. et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood. 2006; 108: 4232–6. DOI: 10.1182/blood-2006-05-025148

36. Miano M., Dufour C. The diagnosis and treatment of aplastic anemia: a review. Int J Hematol. 2015; 101: 527–35. DOI: 10.1007/s12185-015-1787-z

37. Hu R., Mukhina G.L., Piantadosi S. et al. PIG-A mutations in normal hematopoiesis. Blood. 2005; 105: 3848–54. DOI: 10.1182/blood-2004-04-1472

38. Mortazavi Y., Tooze J.A., Gordon-Smith E.C., Rutherford T.R. N-RAS gene mutation in patients with aplastic anemia and aplastic anemia/paroxysmal nocturnal hemoglobinuria during evolution to clonal disease. Blood. 2000; 95: 646–50.

39. Fouassier M., Girodon F., Cleyrat C. et al. Absence of JAK2-V617F in paroxysmal nocturnal haemoglobinuria-associated thrombosis. Thromb Haemost. 2009; 102: 180–2. DOI: 10.1160/TH09-03-0140

40. Shen W., Clemente M.J., Hosono N. et al. Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin Invest. 2014; 124: 4529–38. DOI: 10.1172/JCI74747

41. Maciejewski J.P., Tiu R.V., O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009; 146: 479–88. DOI: 10.1111/j.1365-2141.2009.07757.x

42. Chen G., Zeng W., Maciejewski J.P. et al. Differential gene expression in hematopoietic progenitors from paroxysmal nocturnal hemoglobinuria patients reveals an apoptosis/immune response in “normal” phenotype cells. Leukemia. 2005; 19: 862–8. DOI: 10.1038/sj.leu.2403678

43. Venneker G.T., Asghar S.S. CD59: A molecule involved in antigen presentation as well as downregulation of membrane attack complex. Exp Clin Immunogenet. 1992; 9: 33–47.

44. Richards S.J., Rawstron A.C., Hillmen P. Application of fl ow cytometry to the diagnosis of paroxysmal nocturnal hemoglobinuria. Cytometry. 2000; 42: 223–33.

45. Sutherland D.R., Illingworth A., Keeney M., Richards S.J. High-Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White Blood Cells. Curr Protoc Cytom. 2015; 72: 6.37.1–29. DOI: 10.1002/0471142956.cy0637s72

46. Nishimura J-I., Kanakura Y., Ware R.E. et al. Clinical Course and Flow Cytometric Analysis of Paroxysmal Nocturnal Hemoglobinuria in the United States and Japan. Medicine (Baltimore). 2004; 83: 193–207. DOI: 10.1097/01.md.0000126763.68170.46

47. Borowitz M.J., Craig F.E., Digiuseppe J.A. et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by fl ow cytometry. Cytom Part B. Clin Cytom. 2010; 78: 211–30. DOI: 10.1002/ cyto.b.20525

48. Sipol A.A., Babenko E.V., Borisov V.I. et al. An inter-laboratory comparison of PNH clone detection by high-sensitivity fl ow cytometry in a Russian cohort. Hematology. 2015; 20: 31–8. DOI: 10.1179/1607845414Y.0000000162

49. Young N.S., Maciejewski J.P., Sloand E. et al. The relationship of aplastic anemia and PNH. Int J Hematol. 2002; 76(2): 168–72.

50. Sugimori C., Chuhjo T., Feng X. et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006; 107: 1308–14. DOI: 10.1182/blood-2005-06-2485

51. Kulagin A., Lisukov I., Ivanova M. et al Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: Results of two-centre prospective study. Br J Haematol. 2014; 164: 546–54. DOI: 10.1111/bjh.12661

52. Zhao X., Zhang L.L., Jing L. et al. The role of paroxysmal nocturnal hemoglobinuria clones in response to immunosuppressive therapy of patients with severe aplastic anemia. Ann Hematol. 2015; 94: 1105–10. DOI: 10.1007/s00277-015-2348-5

53. Fidarova Z.T., Mikhailova E.A., Galtseva I.V. et al. PNH-clon dynamics in aplastic anemia patients during immunosuppressive therapy. Klinicheskaya laboratornaya diagnostika 2016; 61: 490–4 (In Russian).

54. DeZern A.E., Symons H.J., Resar L.S. et al. Detection of paroxysmal nocturnal hemoglobinuria clones to exclude inherited bone marrow failure syndromes. Eur J Haematol. 2014; 92: 467–70. DOI: 10.1111/ejh.12299

55. Winkler T., Hong S.G., Decker J.E. et al. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Invest. 2013; 123: 1952–63. DOI: 10.1172/JCI67146

56. Townsley D.M., Dumitriu B., Young N.. Bone marrow failure and the telomeropathies. Blood. 2015; 124: 2775–84. DOI: 10.1182/blood-2014-05-526285

57. Calado R.T., Cooper J.N., Padilla-Nash H.M. et al. Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia. Leukemia. 2012; 26: 700–7. DOI: 10.1038/leu.2011.272

58. Brümmendorf T.H., Maciejewski J.P., Mak J. et al. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001; 97: 895–900. DOI: 10.1182/blood.V97.4.895

59. Demina I.A., Ovsyannikova G.S., Kalinina I.I. et al. Telomere length value for individualization of aplastic anemia therapy. Pediatria. 2017; 96(5): 97–103. DOI: 10.24110/0031-403X-2017-96-5-97-103 (In Russian).

60. Young N.S. Telomere biology and telomere diseases: implications for practice and research. Hematology Am Soc Hematol Educ Program. 2010; 2010: 30–5.

61. Kulagin A.D., Borisov V.I., Pronkina N.V. et al. The frequency and prognostic value of the shortening of telomeric DNA regions in aplastic anemia. Gematologiya I transfusiologiya 2014; 59:20 (In Russian).

62. Narita A., Muramatsu H., Sekiya Y. et al. Paroxysmal nocturnal hemoglobinuria and telomere length predicts response to immunosuppressive therapy in pediatric aplastic anemia. Haematologica. 2015; 100: 1546–52. DOI: 10.3324/ haematol.2015.132530


Review

For citations:


Fidarova Z.T., Abramova A.V., Luchkin A.V. CLONE OF PAROXYSMAL NOCTURNAL HAEMOGLOBINURIA AND OTHER PREDICTORS OF THE RESPONSE TO IMMUNOSUPPRESSIVE THERAPY IN PATIENTS WITH IDIOPATHIC APLASTIC ANAEMIA. Russian journal of hematology and transfusiology. 2019;64(3):342-352. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-3-342-352

Views: 8666


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)