Preview

Russian journal of hematology and transfusiology

Advanced search

METALLOPROTEASE ADAMTS-13

https://doi.org/10.35754/0234-5730-2019-64-4-471-482

Abstract

Introduction. The signifi cance of ADAMTS-13 extends beyond its key role in the pathogenesis of thrombotic thrombocytopenic purpura (TTP); there is evidence of a relationship between a decrease in the ADAMTS-13 activity and thrombotic events in acute myocardial infarction and ischemic stroke.

Aim. To generalise available information on the structure and function of the metalloprotease ADAMTS-13.

General findings. The biological function of ADAMTS-13 consists in the cleavage of ultra-large von Willebrand factor (vWF) multimers. The fact that its defi ciency causes the development of TTP provides a basis for understanding the function of vWF–cleaving protease. ADAMTS-13 has a domain structure. The functional roles of most ADAMTS-13 domains, as well as the key role of the ADAMTS-13-vWF interaction in the regulation of haemostasis, are defi ned. The conformational activation of ADAMTS-13 by vWF constitutes an important aspect of its function. After getting into the bloodstream, ultra-large vWF multimers quickly adopt a closed conformation, which becomes very resistant to ADAMTS-13 proteolysis in the absence of shear stress. Ultra-large plasma vWF multimers regain their sensitivity to ADAMTS-13 after being exposed to high fl uid shear stress, which unfolds the central vWF-A2 domain. The unfolding of a vWF molecule under shear stress conditions reveals previously hidden exosites in domain A2, which gradually increase the binding affi nity between ADAMTS-13 and vWF. The mechanism underlying the production of autoantibodies against ADAMTS-13 is unknown and requires further study. The masking of cryptic epitopes in the closed conformation of ADAMTS-13 prevents the formation of autoantibodies. Early antigen recognition of ADAMTS-13 occurs through surface-exposed epitopes in the C-terminal domains. More detailed information on the mechanisms underlying the interaction between ADAMTS-13 and the vWF can improve the understanding of mechanisms involved in the regulation of the coagulation system.

Conflict of interest: the authors declare no confl ict of interest.

Financial disclosure: the study had no sponsorship.

About the Authors

A. V. Koloskov
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Andrey V. Koloskov, Dr. Sci. (Med.), Prof., Head of the Department for Hematology and Transfusiology 

tel.: +7 (812) 948-09-17



A. A. Mangushlo
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Alexander A. Mangushlo, Postgraduate Researcher, Department for Hematology and Transfusiology

tel.: +7 (812) 948-09-17



References

1. Furlan M., Robles R., Lammle B. Partial purifi cation and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996; 87: 4223–34.

2. Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996; 87: 4235–44.

3. Levy G.G., Nichols W.C., Lian E.C. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001; 413: 488–94. DOI: 10.1038/35097008

4. Zheng X.L., Chung D., Takayama T, Majerus E. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J. Biol. Chem. 2001; 276: 41059–63. DOI: 10.1074/ jbc.C100515200

5. Zheng X.L. Structure-function and regulation of ADAMTS-13 protease. J. Thromb Haemost. 2013; 11(Suppl. 1): 11–23. DOI: 10.1111/jth.12221

6. Chernova E.V. Von Willebrand factor. Herald of North-Western State Medical University named after I.I. Mechnikov. 2018; 10(4): 73–80. DOI: 10.17816/ mechnikov201810473-80 (in Russian).

7. Marti T., Rosselet S.J., Titani K., Walsh K.A. Identifi cation of disulfi de-bridged substructures within human von Willebrand factor. Biochemistry. 1987; 26: 8099– 109. DOI: 10.1021/bi00399a013

8. Wise R.J., Pittman D.D., Handin R.I. et al. The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell. 1988; 52: 229–36.

9. Wagner D.D., Saffaripour S., Bonfanti R. et al. Induction of specifi c storage organelles by von Willebrand factor propolypeptide. Cell. 1991; 64: 403–13.

10. Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N. Engl. J. Med. 1982; 307: 1432–5.

11. Plaimauer B., Zimmermann K., Volkel D. et al. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood. 2002; 100: 3626–32. DOI: 10.1182/blood-2002-05-1397

12. Uemura M., Tatsumi K., Matsumoto M. et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood. 2005; 106: 922–4. DOI: 10.1182/ blood-2005-01-0152

13. Niiya M., Uemura M., Zheng X.W. et al. Increased ADAMTS13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo. J. Thromb Haemost. 2006; 4:1063–70. DOI: 10.1111/j.1538-7836.2006.01893.x

14. Okano E., Ko S., Kanehiro H, Matsumoto M. et al. ADAMTS13 activity decreases after hepatectomy, refl ecting a postoperative liver dysfunction. Hepatogastroenterology. 2010; 57: 316–20.

15. Kume Y., Ikeda H., Inoue M. et al. Hepatic stellate cell damage may lead to decreased plasma ADAMTS13 activity in rats. FEBS Lett. 2007; 58: 1631–4. DOI: 10.1016/j.febslet.2007.03.029

16. Watanabe N., Ikeda H., Kume Y. et al. Increased production of ADAMTS13 in hepatic stellate cells contributes to enhanced plasma ADAMTS13 activity in rat models of cholestasis and steatohepatitis. Thromb Haemost. 2009; 102: 389–96. DOI: 10.1160/TH08-11-0732

17. Turner N., Nolasco L., Tao Z. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006; 4: 1396–404. DOI: 10.1111/j.1538- 7836.2006.01959.x

18. Turner N.A., Nolasco L., Ruggeri Z.M., Moake J.L. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood. 2009; 114: 5102–11. DOI: 10.1182/blood-2009-07-231597

19. Lee M., Rodansky E.S., Smith J.K., Rodgers G.M. ADAMTS13 promotes angiogenesis and modulates VEGF-induced angiogenesis. Microvasc Res. 2012; 84: 109–15. DOI: 10.1016/j.mvr.2012.05.004

20. Liu L., Choi H., Bernardo A. et al. Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J. Thromb Haemost. 2005; 3: 2536–44. DOI: 10.1111/j.1538- 7836.2005.01561.x

21. Suzuki M., Murata M., Matsubara Y. et al. Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets. Biochem. Biophys. Res. Commun. 2004; 313: 212–16. DOI: 10.1016/j.bbrc.2003.11.111

22. Gardner M.D., Chion C.K., de Groot R. et al. A functional calcium-binding site in the metalloprotease domain of ADAMTS13. Blood. 2009; 113: 1149–57. DOI: 10.1182/blood-2008-03-144683

23. South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J. Thromb Haemost. 2018; 16: 6–18. DOI: 10.1111/jth.13898

24. Ai J., Smith P., Wang S. et al. The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specifi city and are all required for cleavage of von Willebrand factor. J. Biol. Chem. 2005; 280: 29428–34. DOI: 10.1074/jbc. M505513200

25. Gao W., Anderson P.J., Sadler J.E. Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specifi city. Blood. 2008; 112: 1713–9. DOI: 10.1182/blood-2008-04-148759

26. de Groot R., Bardhan A., Ramroop N. et al. Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 2009; 113: 5609–16. DOI: 10.1182/ blood-2008-11-187914

27. Gao W., Anderson P.J., Majerus E.M. et al. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc. Natl. Acad. Sci. USA. 2006; 103: 19099–104. DOI: 10.1073/pnas.0607264104

28. Zanardelli S., Chion A.C., Groot E. et al. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF. Blood. 2009; 114: 2819–28. DOI: 10.1182/blood-2009-05-224915

29. Asch A.S., Tepler J., Silbiger S., Nachman R.L. Cellular attachment to thrombospondin. Cooperative interactions between receptor systems. J. Biol. Chem. 1991; 266: 1740–5.

30. Vomund A.N., Majerus E.M. ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor. J. Biol. Chem. 2009; 284: 30925– 32. DOI: 10.1074/jbc.M109.000927

31. Yeh H.C., Zhou Z., Choi H. et al. Disulfi de bond reduction of von Willebrand factor by ADAMTS-13. J. Thromb Haemost. 2010; 8: 2778–88. DOI: 10.1111/j.1538-7836.2010.04094.x

32. Tao Z., Wang Y., Choi H. et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under fl ow. Blood. 2005; 106: 141–3. DOI: 10.1182/blood-2004-11-4188

33. Tang B.L. ADAMTS: a novel family of extracellular matrix proteases. Int. J. Biochem. Cell Biol. 2001; 33: 33–44.

34. Tao Z., Peng Y., Nolasco L. et al. Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under fl ow conditions. Blood. 2005; 106: 4139–45. DOI: 10.1182/blood-2005-05-2029

35. de Maeyer B., de Meyer S.F., Feys H.B. et al. The distal carboxyterminal domains of murine ADAMTS13 infl uence proteolysis of platelet-decorated VWF strings in vivo. J. Thromb Haemost. 2010; 8: 2305–12. DOI: 10.1111/j.1538- 7836.2010.04008.x

36. Xiao J., Jin S.Y., Xue J. et al. Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis. Arterioscler Thromb Vasc. Biol. 2011; 31: 2261–9. DOI: 10.1161/ATVBAHA.111.229609

37. Zhou W., Inada M., Lee T.P. et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest. 2005; 85: 780–8. DOI: 10.1038/labinvest.3700275

38. Dong J.F. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J. Thromb Haemost. 2005; 3: 1710–6. DOI: 10.1111/j.1538- 7836.2005.01360.x

39. Zhang P., Pan W., Rux A.H. et al. The cooperative activity between the carboxyl-terminal TSP-1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow. Blood. 2007; 110: 1887–94. DOI: 10.1182/blood-2007-04-083329

40. Pareti F.I., Lattuada A., Bressi C. et al. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis. Circulation. 2000; 102: 1290–5.

41. Blackshear J.L., Wysokinska E.M., Safford R.E. et al. Indexes of von Willebrand Factor as Biomarkers of Aortic Stenosis Severity (from the Biomarkers of Aortic Stenosis Severity [BASS] Study). Am. J. Cardiol. 2013; 111: 374–81. DOI: 10.1016/j. amjcard.2012.10.015

42. Yoshida K., Tobe S., Kawata M. Acquired von Willebrand disease type IIA in patients with aortic valve stenosis. Ann. Thorac. Surg. 2006; 81: 1114–6. DOI: 10.1016/j.athoracsur.2005.01.023

43. Skipwith C.G., Cao W., Zheng X.L. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fl uid shear stress. J. Biol. Chem. 2010; 285: 28596–603. DOI: 10.1074/jbc.M110.131227

44. Li M., Ku D.N., Forest C.R. Microfl uidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab. Chip. 2012; 12: 1355–62. DOI: 10.1039/c2lc21145a

45. Wu T., Lin J., Cruz M.A. et al. Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13. Blood. 2010; 115: 370–8. DOI: 10.1182/ blood-2009-03-210369

46. Zhang Q., Zhou Y.F., Zhang C.Z. et al. Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc. Natl. Acad. Sci. USA. 2009; 106: 9226–31. DOI: 10.1073/pnas.0903679106

47. Nishio K., Anderson P.J., Zheng X.L., Sadler J.E. Binding of platelet glycoprotein Ibalpha to von Willebrand factor domain A1 stimulates the cleavage of the adjacent domain A2 by ADAMTS13. Proc. Natl. Acad. Sci. USA 2004; 101: 10578–83. DOI: 10.1073/pnas.0402041101

48. Muia J., Zhu J., Gupta G. et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc. Natl. Acad. Sci. USA. 2014; 111: 18584–9. DOI: 10.1073/ pnas.1413282112

49. Jian C., Xiao J., Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012; 119: 3836–43. DOI: 10.1182/ blood-2011-12-399501

50. South K., Luken B.M., Crawley J.T. et al. Conformational activation of ADAMTS13. Proc. Natl. Acad. Sci. USA. 2014; 111: 18578–83. DOI: 10.1073/ pnas.1411979112

51. Feys H.B., Anderson P.J., Vanhoorelbeke K. et al. Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost. 2009; 7: 2088–95. DOI: 10.1111/j.1538-7836.2009.03620.x

52. Deforche L., Roose E., Vandenbulcke A. et al. Linker regions and fl exibility around the metalloprotease domain account for conformational activation of ADAMTS-13. J. Thromb Haemost. 2015; 13: 2063–75. DOI: 10.1111/jth.1314

53. Tsai H.M., Raoufi M., Zhou W. et al. ADAMTS13-binding IgG are present in patients with thrombotic thrombocytopenic purpura. J. Thromb Haemost. 2006; 95: 886–92.

54. Li D., Xiao J., Paessler M., Zheng X.L. Novel recombinant glycosylphosphatidylinositol (GPI)-anchored ADAMTS13 and variants for assessment of anti-AD- AMTS13 autoantibodies in patients with thrombotic thrombocytopenic purpura. J. Thromb Haemost. 2011; 106: 947–58. DOI: 10.1160/TH11-05-0337

55. Ferrari S., Mudde G.C., Rieger M. et al. IgG subclass distribution of antiADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J. Thromb Haemost. 2009; 7: 1703–10. DOI: 10.1111/j.1538- 7836.2009.03568.x

56. Zheng X.L., Wu H.M., Shang D. et al. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura. Haematologica. 2010; 95: 1555–62. DOI: 10.3324/haematol.2009.019299

57. Pos W., Crawley J.T., Fijnheer R. et al. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifi es a binding site for the A2 domain of VWF. Blood. 2010; 115: 1640–9. DOI: 10.1182/ blood-2009-06-229203

58. Pos W., Sorvillo N., Fijnheer R. et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica. 2011; 96: 1670–7. DOI: 10.3324/haematol.2010.036327

59. Luken B.M., Turenhout E.A., Kaijen P.H. et al. Amino acid regions 572–579 and 657–666 of the spacer domain of ADAMTS13 provide a common antigenic core required for binding of antibodies in patients with acquired TTP. J. Thromb Haemost. 2006; 96: 295–301. DOI: 10.1160/TH06-03-0135

60. Yamaguchi Y., Moriki T., Igari A. et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res. 2011; 128: 169–73. DOI: 10.1016/j.thromres.2011.03.010

61. Jin S.Y., Skipwith C.G., Zheng XL. Amino acid residues Arg (659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor. Blood. 2010; 115: 2300–10. DOI: 10.1182/ blood-2009-07-235101

62. Studt J.D., Kremer Hovinga J.A. et al. Familial acquired thrombotic thrombocytopenic purpura: ADAMTS-13 inhibitory autoantibodies in identical twins. Blood. 2004; 103: 4195–7. DOI: 10.1182/blood-2003-11-3888

63. Scully M., Brown J., Patel R. et al. Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link. J. Thromb Haemost. 2010; 8: 257–62. DOI: 10.1111/j.1538-7836.2009.03692.x

64. Verbij F.C., Turksma A.W., de Heij F. et al. CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura recognize CUB2 domain-derived peptides. Blood. 2016; 127: 1606–9. DOI: 10.1182/blood-2015-10-668053

65. Grillberger R., Casina V.C., Turecek P.L. et al. Anti-ADAMTS13 IgG autoantibodies present in healthy individuals share linear epitopes with those in patients with thrombotic thrombocytopenic purpura. Haematologica. 2014; 99: e58–60. DOI: 10.3324/haematol.2013.100685


Review

For citations:


Koloskov A.V., Mangushlo A.A. METALLOPROTEASE ADAMTS-13. Russian journal of hematology and transfusiology. 2019;64(4):471–482. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-4-471-482

Views: 11621


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)