Preview

Russian journal of hematology and transfusiology

Advanced search

Recovery of CD4+ CD31+ T-cell in patients with lymphoproliferative disorders following hematopoietic stem cell transplantation

https://doi.org/10.18821/0234-5730-2016-61-3-133-137

Abstract

We have evaluated the dynamics of post-transplant recovery of CD4+CD45RA+CD31+ T cells and CD4+CD45RACD31+ T-cells in patients with lymphoproliferative diseases after high-dose chemotherapy with autologous stem cell transplantation (auto-HSCT). 87 patients were included in the study. The content of circulating CD4+СD31+ naïve and memory T-cells has been assessed with the use of flow cytometry before auto-HSCT, at the day of engraftment, and in 6 and 12 months. Relative amount of CD4+CD45RACD31+ T-cells in patients was elevated in comparison with healthy controls, restored rapidly following auto-HSCT and reached initially high level at the day of engraftment. Post-transplant mediastinal radiotherapy significantly reduced counts of CD4+CD45RA+CD31+ T-cells and extended recovery period compared to the non-irradiated patient level. Non-thymic tissue irradiation reduced this subset slightly and non-significantly. The study of the recovery of CD4+CD45RA+CD31+ T-cells by virtue of flow cytometry required an accurate gating strategy to exclude CD31+ T memory cells.

About the Authors

E. V. Batorov
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Batorov Egor V., MD, PhD, researcher of the Laboratory of Cellular Immunotherapy

Scopus Author ID 35768879800

Novosibirsk, 630090



M. A. Tikhonova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


I. V. Kryuchkova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


V. V. Sergeevicheva
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


S. A. Sizikova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


D. S. Batorova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


G. Yu. Ushakova
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


A. V. Gilevich
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


A. A. Ostanin
Research Institute of Fundamental and Clinical Immunology
Russian Federation
Novosibirsk, 630090


E. R. Chernykh
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Researcher ID: K-1052-2014

Novosibirsk, 630090



References

1. Mackall C.L., Hakim F.T., Gress R.E. Restoration of T-cell homeostasis after T-cell depletion. Semin. Immunol.1997; 9(6): 339–46.

2. Goronzy J.J., Lee W.W., Weyand C.M. Aging and T-cell diversity. Exp. Gerontol. 2007; 42(5): 400–6.

3. Poulin J.F., Viswanathan M.N., Harris J.M., Komanduri K.V., Wieder E., Ringuette N., et al. Direct evidence for thymic function in adult humans. J. Exp. Med.1999; 190(4): 479–86.

4. Sfikakis P.P., Gourgoulis G.M., Moulopoulos L.A., Kouvatseas G., Theofilopoulos A.N., Dimopoulos M.A. Age-related thymic activity in adults following chemotherapyinduced lymphopenia. Eur. J. Clin. Invest. 2005; 35(6): 380–7.

5. Qi Q., Liu Y., Cheng Y., Glanville J., Zhang D., Lee J.Y., et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl. Acad. Sci. USA. 2014; 111(36): 13139–44.

6. Ringhoffer S., Rojewski M., Döhner H., Bunjes D., Ringhoffer M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/ βTREC ratio and thymic naive T cells. Haematologica. 2013; 98(10): 1600–8.

7. Sairafi D., Mattsson J., Uhlin M., Uzunel M. Thymic function after allogeneic stem cell transplantation is dependent on graft source and predictive of long term survival. Clin. Immunol. 2012; 142(3): 343–50.

8. Alexander T., Thiel A., Rosen O., Massenkeil G., Sattler A., Kohler S., et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009; 113(1): 214–23.

9. Khaydukov S.V. Minor subsets of T-helper cells (Th thymic naive, Th central naive, Th9, Th22 and CD4+CD8+ double positive T-cells. Medical immunology. Russian journal (Meditsinskaya immunologiya). 2013; 15(6): 503–12. (in Russian)

10. Hazenberg M.D., Verschuren M.C., Hamann D., Miedema F., van Dongen J.J. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J. Mol. Med. (Berl). 2001; 79(11): 631–40.

11. Kohler S., Thiel A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood. 2009; 113(4): 769–74.

12. Chu Y.W., Memon S.A., Sharrow S.O., Hakim F.T., Eckhaus M., Lucas P.J., et al. Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood. 2004; 104(4): 1110–9.

13. Azevedo R.I., Soares M.V., Barata J.T., Tendeiro R., Serra-Caetano A., Victorino R.M., et al. IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner. Blood. 2009; 113(13): 2999–3007.

14. Junge S., Kloeckener-Gruissem B., Zufferey R., Keisker A., Salgo B., Fauchere J.C., et al. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur. J. Immunol. 2007; 37(11): 3270–80.

15. Batorov E.V., Blinova E.A., Tikhonova M.A., Lopatnikova Yu.A., Kryuchkova I.V., Batorova D.S., et al. Relationship between clinical factors andfunctional activity of the thymus in patients with hematological malignancies. Hematology and Transfusiology, Russian journal (Gematologiya i transfusiologiya). 2014; 59(3): 16–21]. (in Russian)

16. Ruiz-Hernandez R., Jou A., Cabrera C., Noukwe F., de Haro J., Borras F., et al. Distribution of CD31 on CD4 T-Cells from cord blood, peripheral blood and tonsil at different stages of differentiation. Open. Immunol. J. 2010; 3 (1): 19–26.

17. Nausch N., Bourke C.D., Appleby L.J., Rujeni N., Lantz O., Trottein F., et al. Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci. Rep. 2012; 2: 472. doi:10.1038/srep00472.

18. Yovino S., Kleinberg L., Grossman S.A., Narayanan M., Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 2013; 31(2): 140–4.

19. Koukourakis G.V., Zabatis H., Zacharias G.A., Koukourakis M.J. Post-surgical irradiation causes cellular immune suppression in patients with breast cancer. Eur. J. Cancer Care (Engl). 2009; 18(3): 306–12.

20. Marelli-Berg F.M., Clement M., Mauro C., Caligiuri G. An immunologist’s guide to CD31 function in T-cells. J. Cell Sci.2013; 126(Pt11): 2343–52. doi: 10.1242/jcs.124099.


Review

For citations:


Batorov E.V., Tikhonova M.A., Kryuchkova I.V., Sergeevicheva V.V., Sizikova S.A., Batorova D.S., Ushakova G.Yu., Gilevich A.V., Ostanin A.A., Chernykh E.R. Recovery of CD4+ CD31+ T-cell in patients with lymphoproliferative disorders following hematopoietic stem cell transplantation. Russian journal of hematology and transfusiology. 2016;61(3):133-137. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-3-133-137

Views: 649


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)