Preview

Russian journal of hematology and transfusiology

Advanced search

Detection of measurable residual disease in adults with acute leukaemia

https://doi.org/10.35754/0234-5730-2020-65-4-460-472

Abstract

Introduction. Measurable residual disease (MRD) is a residual amount of malignant cells able to invoke relapse after complete haematological remission.

Aim. Analysis of the MRD prognostic value in various treatment protocols for acute leukaemia.

Main findings. MRD is a good prognostic indicator in lymphoblastic and myeloid leukaemia. Quantification of residual tumour cells is used for patient risk stratification according to the relapse prognosis. Stratification data, including MRD estimates at check points, may impact therapy choice, such as transplantation of allogeneic haematopoietic stem cells. Therefore, MRD estimation in acute leukaemia has become mandatory in clinical trial and research.

About the Authors

I. V. Galtseva
National Research Center for Hematology
Russian Federation

Irina V. Galtseva, Cand. Sci. (Med.), Head of the Scientific and Clinical Laboratory for Immunophenotyping of Blood and Bone Marrow Cells

125167, Moscow



Y. O. Davydova
National Research Center for Hematology
Russian Federation

Yulia O. Davydova, Physician (clinical diagnostics), Scientific and Clinical Laboratory for Immunophenotyping of Blood and Bone Marrow Cells

125167, Moscow



E. N. Parovichnikova
National Research Center for Hematology
Russian Federation

Elena N. Parovichnikova, Dr. Sci. (Med.), Head of the Department of Chemotherapy for Hemoblastoses, Hematopoietic Depressions and BMT

125167, Moscow



References

1. Cheson B.D., Bennett J.M., Kopecky K.J. et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003; 21(24): 4642–9. DOI: 10.1200/JCO.2003.04.036.

2. Pui C.H., Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000; 14(5): 783–5. DOI: 10.1038/sj.leu.2401780.

3. Schuurhuis G.J., Heuser M., Freeman S. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018; 131(12): 1275–91. DOI: 10.1182/blood-2017-09-801498.

4. Brüggemann M., Raff T., Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012; 120(23): 4470–81. DOI: 10.1182/blood-2012-06-379040.

5. Pui C.H., Pei D., Coustan-Smith E. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 2015; 16(4): 465–74. DOI: 10.1016/S1470-2045(15)70082-3.

6. Kishkun A.A. Laboratory diagnostic guide. Moscow: GEOTAR-Media, 2013; 800 (In Russian).

7. Brüggemann M., Kotrova M. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Hematol Am Soc Hematol Educ Progr. 2017; 2017(1): 13–21. DOI: 10.1182/asheducation-2017.1.13.

8. Ravandi F., Jorgensen J.L., Thomas D.A. et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013; 122(7): 1214–21. DOI: 10.1182/blood-2012-11-466482.

9. Zhou Y., Slack R., Jorgensen J.L. et al. The effect of peritransplant minimal residual disease in adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Clin Lymphoma, Myeloma Leuk. 2014; 14(4): 319–26. DOI: 10.1016/j.clml.2014.01.002.

10. Sanoja-Flores L., Paiva B., Flores-Montero J.A. et al. Next generation flow (NGF): a high sensitive technique to detect circulating peripheral blood (PB) clonal plasma cells (cPC) in patients with newly diagnosed of plasma cell neoplasms (PCN). Blood. 2015; 126(23): 4180. DOI: 10.1182/blood.V126.23.4180.4180.

11. Borowitz M.J., Pullen D.J., Shuster J.J. et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children’s Oncology Group study. Leukemia. 2003; 17(8): 1566–72. DOI: 10.1038/sj.leu.2403001.

12. Gökbuget N., Kneba M., Raff T. et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012; 120(9): 1868–76. DOI: 10.1182/blood-2011-09-377713.

13. Beldjord K., Chevret S., Asnafi V. et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014; 123(24): 3739–49. DOI: 10.1182/blood-2014-01-547695.

14. Bassan R., Spinelli O., Oldani E. et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009; 113(18): 4153–62. DOI: 10.1182/blood-2008-11-185132.

15. Ribera J.M., Oriol A., Morgades M. et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol. 2014; 32(15): 1595–1604. DOI: 10.1200/JCO.2013.52.2425.

16. Basso G., Veltroni M., Valsecchi M.G. et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009; 27(31): 5168–74. DOI: 10.1200/JCO.2008.20.8934.

17. Björklund E., Mazur J., Söderhäll S., Porwit-MacDonald A. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia. 2003; 17(1): 138–48. DOI: 10.1038/sj.leu.2402736.

18. San Miguel J.F., Vidriales M.B., López-Berges C. et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001; 98(6): 1746–51. DOI: 10.1182/blood.v98.6.1746

19. Maurillo L., Buccisano F., Del Principe M.I. et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008; 26(30): 4944–51. DOI: 10.1200/JCO.2007.15.9814.

20. Terwijn M., van Putten W.L.J., Kelder A. et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013; 31(31): 3889–97. DOI: 10.1200/JCO.2012.45.9628.

21. van der Velden V.H.J., van der Sluijs-Geling A., Gibson B.E.S. et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/ MRC AML12 protocol. Leukemia. 2010; 24(9): 1599–1606. DOI: 10.1038/leu.2010.153.

22. Buonamici S., Ottaviani E., Testoni N. et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood. 2002; 99(2): 443–9. DOI: 10.1182/blood.v99.2.443.

23. Cilloni D., Renneville A., Hermitte F. et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009; 27(31): 5195–201. DOI: 10.1200/JCO.2009.22.4865.

24. Lobanova T., Parovichnikova E., Galtseva I. et al. Negative minimal residual disease status by multicolour flow cytometry after 1st course is the most predictive factor for AML patients. HemaSphere. 2019; 3: 477. DOI: 10.1097/01.hs9.0000562516.06403.b0.

25. Combination Chemotherapy Based on Risk of Relapse in Treating Young Patients With Acute Lymphoblastic Leukemia (AIEOP LLA 2000). ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2008: https://clinicaltrials.gov/.

26. Clinical trials AIEOP-BFM ALL 2009 (2007-004270-43). EU Clinical Trials Register, 2010: https://www.clinicaltrialsregister.eu/.

27. ALL-REZ BFM 2002: Multi-Center Study for Children With Relapsed Acute Lymphoblastic Leukemia. ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2008: https://clinicaltrials.gov/

28. Eckert C., von Stackelberg A., Seeger K. et al. Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia — long-term results of trial ALL-REZ BFM P95/96. Eur J Cancer. 2013; 49(6): 1346–55. DOI: 10.1016/j.ejca.2012.11.010.

29. Treatment of High Risk Adult Acute Lymphoblastic Leukemia (LAL-AR/2003). ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2009: https://clinicaltrials.gov/.

30. German Multicenter Trial for Treatment of Newly Diagnosed Acute Lymphoblastic Leukemia in Adults (07/2003). ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2005: https://clinicaltrials.gov/.

31. Multicenter Clinical Trial for Adult Ph-negative ALL. Non-intensive But Noniterruptive Treatment. ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2010: https://clinicaltrials.gov/.

32. Shen Z., Gu X., Mao W. et al. Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: Systematic review and meta-analysis. BMC Cancer. 2018; 18(1). DOI: 10.1186/s12885-018-4670-5.

33. Leung W., Pui C.H., Coustan-Smith E. et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012; 120(2): 468–72. DOI: 10.1182/blood-2012-02-409813.

34. Norkin M., Katragadda L., Zou F. et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017; 7(12): 634. DOI: 10.1038/s41408-017-0007-x.

35. Anthias C., Dignan F.L., Morilla R. et al. Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hemopoietic SCT in AML. Bone Marrow Transplant. 2014; 49(5): 679–83. DOI: 10.1038/bmt.2014.9.

36. Buckley S.A., Wood B.L., Othus M. et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017; 102(5): 865–73. DOI: 10.3324/haematol.2016.159343.

37. Eckert C., Chen-Santel C., Peters C. et al. Interventional intensification of chemotherapy prior to hematopietic stem cell transplantation reduces residual leukemia but does not improve survival in children with relapsed acute lymphoblastic leukemia. Blood. 2014; 124(21): 61. DOI: 10.1182/blood.v124.21.61.61.

38. Gökbuget N., Dombret H., Bonifacio M. et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018; 131(14): 1522–31. DOI: 10.1182/blood-2017-08-798322.

39. Brüggemann M., Raff T., Flohr T. et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006; 107(3): 1116–23. DOI: 10.1182/blood-2005-07-2708.

40. Pemmaraju N., Kantarjian H., Jorgensen J.L. et al. Significance of recurrence of minimal residual disease detected by multi-parameter flow cytometry in patients with acute lymphoblastic leukemia in morphological remission. Am J Hematol. 2017; 92(3): 279–85. DOI: 10.1002/ajh.24629.

41. Raff T., Gökbuget N., Lüschen S. et al. Molecular relapse in adult standardrisk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials. Blood. 2007; 109(3): 910–5. DOI: 10.1182/blood-2006-07-037093.

42. Drokov M., Popova N., Davydova Y. et al. Preanalytical phase in flow cytometric evaluation of bone marrow. ESCCA 2017 Abstract book:112.

43. Neale G.A.M., Coustan-Smith E., Stow P. et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004;18(5): 934–8. DOI: 10.1038/sj.leu.2403348.

44. Thörn I., Forestier E., Botling J. et al. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Br J Haematol. 2011; 152(6): 743–53. DOI: 10.1111/j.1365-2141.2010.08456.x.

45. Hovorkova L., Zaliova M., Venn N.C. et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood. 2017; 129(20): 2771–81. DOI: 10.1182/blood-2016-11-749978.

46. Nagel I., Bartels M., Duell J. et al. Hematopoietic stem cell involvement in BCRABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood. 2017; 130(18): 2027–31. DOI: 10.1182/blood-2017-05-782888.

47. Cazzaniga G., de Lorenzo P., Alten J. et al. Predictive value of minimal residual disease in philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018; 103(1): 107–15. DOI: 10.3324/haematol.2017.176917.

48. Schenk T.M., Keyhani A., Bottcher S. et al. Multilineage involvement of Philadelphia chromosome positive acute lymphoblastic leukemia. Leukemia. 1998; 12(5): 666–74. DOI: 10.1038/sj.leu.2400986.

49. Inaba H., Coustan-Smith E., Cao X. et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012; 30(29): 3625–32. DOI: 10.1200/JCO.2011.41.5323.

50. Treatment of Patients With Newly Diagnosed Acute Myeloid Leukemia or Myelodysplasia. ClinicalTrials.gov (database of privately and publicly funded clinical studies), 2005: https://clinicaltrials.gov/.


Review

For citations:


Galtseva I.V., Davydova Y.O., Parovichnikova E.N. Detection of measurable residual disease in adults with acute leukaemia. Russian journal of hematology and transfusiology. 2020;65(4):460-472. (In Russ.) https://doi.org/10.35754/0234-5730-2020-65-4-460-472

Views: 16859


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)