Next generation sequencing HLA-typing of recipients and donors of allogeneic haematopoietic stem cells
https://doi.org/10.35754/0234-5730-2021-66-2-206-217
Abstract
Introduction. The patient survival after allogeneic haematopoietic stem cell transplantation (allo-HSCT) from an unrelated or related haploidentical donor is improved in a donor–recipient match resolution at the level of non-coding region identity of HLA genes. Next-generation sequencing (NGS) allows detection of point substitutions in HLA non-coding regions.
Aim — assessment of the NGS-based HLA-typing performance.
Materials and methods. An NGS-based HLA-typing of 1,056 DNA samples from allo-HSCT recipients, their related and registry donors was performed with AllTypekit chemistry (OneLambda, USA). A parallel HLA-typing assay of 96 samples by 8 genes (A/B/C/DRB1/DRB3/DRB4/DRB5/DQB1) was accomplished within one working week.
Results. HLA class I genes were typed at a 4-field (allelic), and HLA class II genes — 2–4-field (high to allelic) resolution. An allelic-resolution typing of HLA class I genes in a Russian population (657 registry donors) was conducted for the first time. The most frequent HLA alleles have been identified: А*02:01:01:01 in HLA-A (26.9 %), B*07:02:01:01 in HLA-B (12.5 %) and C*07:02:01:03 in HLA-C (12.6 %). The most frequent HLA class II variants were DRB1*07:01:01 (14.1 %), DRB3*02:01:01 (18.0 %), DRB4*01:03:01 (18.9 %), DRB5*01:01:01 (13.5 %), DQB1*03:01P (17.4 %).
Conclusion. An NGS-geared HLA-typing has yielded low-ambiguity allelic and high-level resolution results in a parallel sequencing assay with a large number of samples. The method implemented detects genetic polymorphisms also in non-exonic non-coding regions of HLA genes and facilitates typing in candidate HSCT recipients, related and unrelated donors.
About the Authors
E. G. KhamaganovaRussian Federation
Ekaterina G. Khamaganova, Dr. Sci. (Biol.), Head of the Laboratory of Tissue Typing
125167, Moscow
A. R. Abdrakhimova
Russian Federation
Alena R. Abdrakhimova, Researcher, Laboratory of Tissue Typing
125167, Moscow
E. A. Leonov
Russian Federation
Evgeniy A. Leonov, Physician (clinical laboratory diagnostics), Laboratory of Tissue Typing
125167, Moscow
S. P. Khizhinskiy
Russian Federation
Stanislav P. Khizhinskiy, Physician (clinical laboratory diagnostics), Laboratory of Tissue Typing
125167, Moscow
T. V. Gaponova
Russian Federation
Tatiana V. Gaponova, Cand. Sci. (Med.), Deputy Director General, Head of the Department of Blood Cell Processing and Cryoconservation
125167, Moscow
V. G. Savchenko
Russian Federation
Valery G. Savchenko, Dr. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, Director General
125167, Moscow
References
1. Howard C.A., Fernandez-Vina M.A., Appelbaum F.R., et al. Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: Consensus opinion of the Blood and Marrow Marrow Transplant Clinical Trials Network (BMT CTN). Biol Blood Transplant. 2015; 21(1): 4–7. DOI: 10.1016/j.bbmt.2014.09.017.
2. Tiercy J.M. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica. 2016; 101(6): 680–7. DOI: 10.3324/haematol.2015.141119.
3. Dehn J., Spellman S., Hurley C.K., et al. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: Guidelines from the NMDP/ CIBMTR. Blood. 2019; 134(12): 924–34. DOI: 10.1182/blood.2019001212.
4. Standards for Histocompatibility and Immunogenetics Testing – Version 8.0: https://efi-web.org/committees/standards-committee.
5. Marsh S.G., Albert E.D., Bodmer W.F., et al. Nomenclature for factors of the HLA system 2010. Tissue Antigens. 2010; 75(4): 291–455. DOI: 10.1111/j.1399-0039.2010.01466.x.
6. Mayor N.P., Hayhurst J.D., Turner T.R., et al. Recipients receiving better HLAmatched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: A retrospective study. Biol Blood Marrow Transplant. 2019; 25(1): 443–50. DOI: 10.1016/j.bbmt.2018.12.768.
7. Vazirabad I., Chhabra S., Nytes J., et al. Direct HLA genetic comparisons identify highly matched unrelated donor-recipient pairs with improved transplantation outcome. Biol Blood Marrow Transplant. 2019; 25(1): 921–31. DOI: 10.1016/j.bbmt.2018.12.006.
8. Petersdorf E.W., Malkki M., Gooley T.A., et al. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 2007; 4(1): e8. DOI: 10.1371/journal.pmed.0040008.
9. Morishima S., Ogawa S., Matsubara A., et al. Impact of highly conserved HLA haplotype on acute graft-versus-host disease. Blood. 2010; 115(23): 4664–70. DOI: 10.1182/blood-2009-10-251157.
10. Joris M.M., Lankester A.C., von dem Borne P.A., et al. The impact of frequent HLA haplotypes in high linkage disequilibrium on donor search and clinical outcome after unrelated haematopoietic SCT. Bone Marrow Transplant. 2013; 48(4): 483–90. DOI: 10.1038/bmt.2012.189.
11. Petersdorf E.W., Malkki M., Horowitz M.M., et al. Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation. Blood. 2013; 121(10): 1896–1905. DOI: 10.1182/blood-2012-11-465161.
12. IPD-IMGT/HLA. https://www.ebi.ac.uk/ipd/imgt/hla/.
13. Alyanskiy A.L., Makarenko O.A., Ivanova N.E., et al. Development of bone marrow donor registry in Russian Federation: an experience of Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation. Rossiyskiy Zhurnal detskoy gematologii i onkologii. 2016; 3(2):68–74. DOI: 10.17650/2311-1267-2016-3-2-68-74 (In Russian).
14. Excoffier L., Lischer H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10(3): 564–7. DOI: 10.1111/j.1755-0998.2010.02847.x.
15. Sanches-Mazas A., Nunes J.M., Middleton D., et al. Common and well-documented HLA alleles over all of Europe and within European sub-regions: A catalogue from the European Federation for Immunogenetics. HLA. 2017; 89(2): 104– 13. DOI: 10.1111/tan.1295.
16. Lee S.J., Klein J., Haagenson M., et al. High resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007; 110(13): 4576–83. DOI: 10.1182/blood-2007-06-097386.
17. Fernandez-Vina M.A., Klein J.P., Haagenson M., et al. Multiple mismatches at the low expression HLA loci DP, DQ, and DRB3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation. Blood. 2013; 121(22): 4603–10. DOI: 10.1182/blood-2013-02-481945.
18. Khamaganova E.G., Kuzminova E.P., Chapova R.S., et al. HLA-A*/B*C*/DRB1*/ DQB1* genes and haplotypes in bone marrow donors self-identifi ed as Russian in the registry at National Research Center for Hematology. Gematologiya I Transfusiologiya. 2017; 62(2): 65–70. DOI: 10.18821/0234-5730-2017-62-2-65-70 (In Russian).
19. Hurley C.K., Ng J. Continue to focus clinical decision-making on the antigen recognition domain for the present. Hum Immunol. 2019; 80(1): 79–84. DOI: 10.1016/j.humimm.2018.04.010.
20. Petersdorf E.W., O’hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol. 2019; 80(1): 67–78. DOI: 10.1016/j.humimm.2018.10.002.
21. Monos D. Perspective: HLA functional elements outside the antigen recognition domains. Hum Immunol. 2019; 80(1): 1–4. DOI: 10.1016/j.humimm.2018.11.005.
22. Osoegawa K., Mallempati K.C., Gangavarapu S., et al. HLA alleles and haplotypes observed in 263 US families. Hum Immunol. 2019; 80(9): 644–60. DOI: 10.1016/j.humimm.2019.05.018.
23. Creary L.E., Gangavarapu S., Mallempati K.C. Next-generation sequencing reveals new information about HLA allele and haplotype diversity in a large European American population. Hum Immunol. 2019; 80(10): 807–22. DOI: 10.1016/j.humimm.2019.07.275.
Review
For citations:
Khamaganova E.G., Abdrakhimova A.R., Leonov E.A., Khizhinskiy S.P., Gaponova T.V., Savchenko V.G. Next generation sequencing HLA-typing of recipients and donors of allogeneic haematopoietic stem cells. Russian journal of hematology and transfusiology. 2021;66(2):206-217. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-2-206-217