Myeloidderived peripheral blood suppressor cells at haematopoietic stem cell mobilisation in multiple myeloma patients
https://doi.org/10.35754/0234-5730-2021-66-2-218-230
Abstract
Introduction. Multiple myeloma (MM) is a B-cell malignancy with clonal expansion of plasma cells in bone marrow. Highdose chemotherapy with autologous haematopoietic stem cell transplantation is among main consolidation therapies in MM. Myeloid-derived suppressor cells (MDSCs) are immature myeloid-accompanying cells able to suppress the immune response. The administration of granulocyte colony stimulating factor (G-CSF) to mobilise haematopoietic stem cells (HSCs) increases the MDSC count in peripheral blood (PB).
Aim — to study MDSC subsets in PB of remission MM patients and their incidence dynamics at HSC mobilisation.
Methods. The study surveyed 35 MM patients prior to and after HSC mobilisation. The counts of granulocytic (G-MDSCs; Lin–HLA-DR–CD33+ CD66b+), monocytic (М-MDSCs; CD14+ HLA-DRlow/–) and early MDSCs (E-MDSCs; Lin–HLA-DR– CD33+ CD66b–) were estimated in flow cytometry.
Results. Remission MM patients differed from healthy donors in higher relative counts of G-MDSCs (Lin–HLA-DR– CD33+ CD66b+) and increased relative and absolute counts of М-MDSCs (CD14+ HLA-DRlow/–). М-MDSCs significantly outnumbered G-MDSCs. MDSC subset counts were elevated in complete response (CR) and very good partial response (VGPR), as well as in partial response (PR). Higher relative MDSC counts were associated with greater pretreatment (2–3 lines of chemotherapy). After HSC mobilisation with cyclophosphamide 2–4 g/m2 + G-CSF (filgrastim 5 μg/kg/day), the median relative E-MDSC and M-MDSC counts increased by 2.3 and 2.0 times, respectively, while the relative G-MDSC count raised 46-fold perturbing the MDSC subset balance.
Conclusion. Remission MM patients had the increased relative G-MDSC and both relative and absolute M-MDSC counts compared to donors. A greater patient pretreatment was associated with higher relative G-MDSC counts. Treatment response (CR/VGPR vs. PR) was not coupled with MDSC count variation. The G-CSF-induced HSC mobilisation entailed a significant expansion of all three MDSC subsets in PB.
Keywords
About the Authors
T. A. AristovaRussian Federation
Tatiana A. Aristova, Physician (haematology), Department of Haematology with Bone Marrow Transplantation Unit
630099, Novosibirsk
E. V. Batorov
Russian Federation
Egor V. Batorov, Cand. Sci. (Med.), Researcher, Laboratory of Cell Immunotherapy
630099, Novosibirsk
V. V. Sergeevicheva
Russian Federation
Vera V. Sergeevicheva, Cand. Sci. (Med.), Head of the Department of Haematology with Bone Marrow Transplantation Unit
630099, Novosibirsk
S. A. Sizikova
Russian Federation
Svetlana A. Sizikova, Cand. Sci. (Med.), Physician (haematology), Department of Haematology with Bone Marrow Transplantation Unit
630099, Novosibirsk
G. Yu. Ushakova
Russian Federation
Galina Yu. Ushakova, Cand. Sci. (Med.), Physician (haematology), Department of Haematology with Bone Marrow Transplantation Unit
630099, Novosibirsk
A. V. Gilevich
Russian Federation
Andrey V. Gilevich, Cand. Sci. (Med.), Head of the Department of Resuscitation and Intensive Care
630099, Novosibirsk
E. Ya. Shevela
Russian Federation
Ekaterina Ya. Shevela, Dr. Sci. (Med.), Leading Researcher, Laboratory of Cell Immunotherapy
630099, Novosibirsk
A. A. Ostanin
Russian Federation
Alexander A. Ostanin, Dr. Sci. (Med.), Professor, Chief Researcher, Laboratory of Cell Immunotherapy
630099, Novosibirsk
E. R. Chernykh
Russian Federation
Elena R. Chernykh, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Cell Immunotherapy
630099, Novosibirsk
References
1. Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017; 5(1): 3–8. DOI: 10.1158/2326-6066.CIR-16-0297.
2. Talmadge J.E., Gabrilovich D.I. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013; 13: 739–752. DOI: 10.1038/nrc3581.
3. Mandruzzato S., Brandau S., Britten C.M., et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother. 2016; 65: 161–169. DOI: 10.1007/s00262-015-1782-5.
4. Bronte V., Brandau S., Chen S.H., et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016; 7: 12150. DOI: 10.1038/ncomms12150.
5. Cubillos-Ruiz J.R., Mohamed E., Rodriguez P.C. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J Immunother Cancer. 2017; 5: 5. DOI: 10.1186/s40425-016-0203-4.
6. Consonni F.M., Porta C., Marino A., et al. Myeloid-derived suppressor cells: Ductile targets in disease. Front Immunol. 2019; 10: 949. DOI: 10.3389/fimmu.2019.00949.
7. Gabitass R.F., Annels N.E., Stocken D.D., et al. Elevated myeloid-derived suppressor cells in pancreatic esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011; 60: 1419–1430. DOI: 10/1007/s00262-011-1028-0.
8. Safarzadeh E., Orangi M., Mohammadi H., et al. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol. 2018; 233(4): 3024–3036. DOI: 10.1002/jcp.26075.
9. Marvel D., Gabrilovich D.I. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest. 2015; 125(9): 3356–3364. DOI: 10.1172/JCI80005.
10. Bruno A., Mortara L., Baci D., et al. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: Roles in tumor progression. Front Immunol. 2019; 10: 771. DOI: 10.3389/fimmu.2019.00771.
11. Lv M., Wang K., Huang X.J. Myeloid-derived suppressor cells in hematological malignancies: Friends or foes. J Hematol Oncol. 2019; 12: 105. DOI: 10.1186/s13045-019-0797-3.
12. Luyckx A., Schouppe E., Rutgeerts O., et al. G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol. 2012; 143: 83–87.
13. Wang K., Lv M., Chang Y.J., et al. Early myeloid-derived suppressor cells (HLA-DR– /lowCD33+ CD16– ) expanded by granulocyte colony-stimulating factor prevent acute graft-versus-host disease (GVHD) in humanized mouse and might contribute to lower GVHD in patients post allo-HSCT. J Hematol Oncol. 2019; 12(1): 31. DOI: 10.1186/s13045-019-0710-0.
14. Vendramin A., Gimondi S., Bermema A., et al. Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells. Biol Blood Marrow Transplant. 2014; 20(12): 2049–2055. DOI: 10.1016/j.bbmt.2014.09.011.
15. Rajkumar S.V. Multiple myeloma: 2018 update on diagnosis, risk‐stratifi cation and management. Am J Hematol. 2018; 93(8): 981–1114. DOI: 10.1002/ajh.25117.
16. Kumar S.K., Rajkumar S.V., Dispenzieri A., et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008; 111(5): 2516–2020. DOI: 10.1182/blood-2007-10-116129.
17. Robak P., Drozdz I., Szemraj J., Robak T. Drug resistance in multiple myeloma. Cancer Treat Rev. 2018; 70: 199–208. DOI: 10.1016/j.ctrv.2018.09.001.
18. Malek E., de Lima M., Letterio J.J., et al. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Rev. 2016; 30(5): 341–348. DOI: 10.1016/j.blre.2016.04.002.
19. Romano A., Conticello C., Cavalli M., et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014; 2014: 198539. DOI: 10.1155/2014/198539.
20. De Veirman K., Menu E., Maes K., et al. Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Lett. 2019; 442: 233–241. DOI: 10.1016/j.canlet.2018.11.002.
21. Ramachandran I.R., Condamine T., Lin C., et al. Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett. 2016; 371(1): 117–124. DOI: 10.1016/j.canlet.2015.10.040.
22. Lee S.E., Lim J.Y., Kim T.W., et al. Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation. J Immunother Cancer. 2019; 7(1): 35. DOI: 10.1186/s40425-018-0491-y.
23. Palumbo G.A., Parrinello N.L., Giallongo C., et al. Monocytic myeloid derived suppressor cells in hematological malignancies. Int J Mol Sci. 2019; 20(21): 54–59. DOI: 10.3390/ijms20215459.
24. De Veirman K., Van Valckenborgh E., Lahmar Q., et al. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol. 2014; 4: 349. DOI: 10.3389/fonc.2014.00349.
25. Mendeleeva L.P., Votyakova O.M., Pokrovskaya O.S., et al. National clinical guidelines for the diagnosis and treatment of multiple myeloma. Gematologiya i Transfusiologiya. 2016; 61(Supp. 2): 1–24. DOI: 10.18821/0234-5730-2016-61-1. (In Russian).
26. Li L., Wang L. Multiple myeloma: What do we do about immunodefi ciency. J Cancer. 2019; 10(7): 1675–1684. DOI: 10.7150/jca.29993.
27. Brimnes M.K., Vangsted A.J., Knudsen L.M., et al. Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA-DR– /low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010; 72(6): 540–547. DOI: 10.1111/j.1365-3083.2010.02463.
28. Wang Z., Zhang L., Wang H., et al. Tumor-induced CD14+ HLA-DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother. 2015; 64: 389–399. DOI: 10.1007/s00262-014-1646-4.
29. Favaloro J., Liyadipitiya T., Brown R., et al. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. 2014; 55(12): 2893–2900. DOI: 10.3109/10428194.2014.904511.
30. Görgün G.T., Whitehill G., Anderson J.L., et al. Tumor-promoting immunesuppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013; 121(15): 2975–2987. DOI: 10.1182/blood-2012-08-448548.
31. Ramachandran I.R., Martner A., Pisklakova A., et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013; 190(7): 3815–3823. DOI: 10.4049/jimmunol.1203373.
32. Binsfeld M., Muller J., Lamour V., et al. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget. 2016; 7(25): 37931–37943. DOI: 10.18632/oncotarget.9270.
33. Ai L., Mu S., Sun C., et al. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Mol Cancer. 2019; 18(10): 88. DOI: 10.1186/s12943-019-1011-5.
34. Van Valckenborgh E., Schouppe E., Movahedi K., et al. Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia. 2012; 26(11): 2424. DOI: 10.1038/leu.2012.113.
35. Batorov E.V., Tikhonova M.A., Pronkina N.V., et al. Increased circulating CD4+ FOXP3+ T cells associate with early relapse following autologous hematopoietic stem cell transplantation in multiple myeloma patients. Oncotarget. 2018; 9: 27305–27317. DOI: 10.18632/oncotarget.25553.
Review
For citations:
Aristova T.A., Batorov E.V., Sergeevicheva V.V., Sizikova S.A., Ushakova G.Yu., Gilevich A.V., Shevela E.Ya., Ostanin A.A., Chernykh E.R. Myeloidderived peripheral blood suppressor cells at haematopoietic stem cell mobilisation in multiple myeloma patients. Russian journal of hematology and transfusiology. 2021;66(2):218-230. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-2-218-230