Preview

Гематология и трансфузиология

Расширенный поиск

Роль эпигенетических модификаций ДНК и гистонов в лечении онкогематологических заболеваний

https://doi.org/10.35754/0234-5730-2021-66-2-263-279

Полный текст:

Аннотация

Введение. Современные знания о биологии опухолевого процесса демонстрируют важность не только генетических нарушений, но и эпигенетических аномалий в опухолевых клетках. Исследование эпигенетики опухолей позволило получить представления о ключевых путях, связанных с онкогенезом и разработать новые эпигенетические методы лечения.

Цель обзора  — продемонстрировать важность эпигенетических изменений при гематологических заболеваниях и рассмотреть терапевтические подходы, направленные на эти механизмы.

Основные сведения. Описываются наиболее изученные виды эпигенетических изменений в опухолевых клетках: метилирование цитозина в ДНК, метилирование и ацетилирование белков-гистонов. Рассматриваются ферменты, осуществляющие эти модификации, и  обсуждается их роль в  онкогенезе. Приводится описание лекарственных средств, направленных на изменение эпигенетического профиля клеток, в том числе гипометилирующих ДНК агентов, ингибиторов гистоновых деацетилаз и метилаз. Особое внимание уделено веществам, которые в настоящее время применяются для лечения гематологических заболеваний или находятся на разных стадиях клинических испытаний и в ближайшем будущем могут оказаться доступны для применения в клинической практике.

Об авторах

Д. В. Карпенко
ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации
Россия

Карпенко Дмитрий Владимирович, научный сотрудник лаборатории физиологии кроветворения

125167, Москва



Н. А. Петинати
ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации
Россия

Петинати Наталия Арнольдовна, кандидат медицинских наук, старший научный сотрудник лаборатории физиологии кроветворения

125167, Москва



Н. И. Дризе
ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации
Россия

Дризе Нина Иосифовна, доктор биологических наук, профессор, заведующий лабораторией физиологии кроветворения

125167, Москва



А. Е. Бигильдеев
ФГБУ «Национальный медицинский исследовательский центр гематологии» Министерства здравоохранения Российской Федерации
Россия

Бигильдеев Алексей Евгеньевич, доктор биологических наук, ведущий научный сотрудник лаборатории физиологии кроветворения

125167, Москва



Список литературы

1. Jeffers V., Yang C., Huang S., et al. Bromodomains in protozoan parasites: Evolution, function, and opportunities for drug development. Microbiol Mol Biol Rev. 2017; 81(1). DOI: 10.1128/mmbr.00047-16.

2. Sharif J., Muto M., Takebayashi S., et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007; 450(7171): 908–12. DOI: 10.1038/nature06397.

3. Cortellino S., Xu J., Sannai M., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011; 146(1): 67–79. DOI: 10.1016/j.cell.2011.06.020.

4. Genovese G., Kähler A.K., Handsaker R.E., et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014; 371(26): 2477–87. DOI: 10.1056/NEJMoa1409405.

5. Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011; 25(10): 1010–22. DOI: 10.1101/gad.2037511.

6. Hashimoto K., Oreffo R.O.C., Gibson M.B., et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009; 60(11): 3303–13. DOI: 10.1002/art.24882.

7. Kinner A., Wu W., Staudt C., et al. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008; 36(17): 5678–94. DOI: 10.1093/nar/gkn550.

8. https://www.thermofisher.com/ru/ru/home/life-science/antibodies/antibodies-learning-center/antibodies-resource-library/antibody-methods/epigenetics/_jcr_content/MainParsys/image_353a/backgroundimg.img.jpg/1595366270303.jpg

9. Harikumar A., Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 2015; 16(12): 1609–19. DOI: 10.15252/embr.201541011.

10. Heintzman N.D., Stuart R.K., Hon G., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007; 39(3): 311–8. DOI: 10.1038/ng1966.

11. Kleff S., Andrulis E.D., Anderson C.W., et al. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem. 1995; 270(42): 24674–7. DOI: 10.1074/jbc.270.42.24674.

12. Sobulo O.M., Borrow J., Tomek R., et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16) (q23;p13.3). Proc Natl Acad Sci USA. 1997; 94(16): 8732–7. DOI: 10.1073/pnas.94.16.8732.

13. Li B.E., Ernst P. Two decades of leukemia oncoprotein epistasis: The MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol. 2014; 42(12): 995–1012. DOI: 10.1016/j.exphem.2014.09.006.

14. Wang J., Iwasaki H., Krivtsov A., et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J. 2005; 24(2): 368–81. DOI: 10.1038/sj.emboj.7600521.

15. Shima H., Yamagata K., Aikawa Y., et al. Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ–TIF2 fusion. Int J Hematol. 2014; 99(1): 21–31. DOI: 10.1007/s12185-013-1466-x.

16. Pasqualucci L., Dominguez-Sola D., Chiarenza A., et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011; 471(7337): 189–95. DOI: 10.1038/nature09730.

17. Deguchi K., Ayton P.M., Carapeti M., et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell. 2003; 3(3): 259–71. DOI: 10.1016/S1535-6108(03)00051-5.

18. Samec M., Liskova A., Koklesova L., et al. Fluctuations of histone chemical modifications in breast, prostate, and colorectal cancer: An implication of phytochemicals as defenders of chromatin equilibrium. Biomolecules. 2019; 9(12): 829. DOI: 10.3390/biom9120829.

19. Choudhary C., Kumar C., Gnad F., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009; 325(5942): 834–40. DOI: 10.1126/science.1175371.

20. Morishima T., Krahl A.C., Nasri M., et al. LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood. 2019; 134(14): 1159–75. DOI: 10.1182/blood.2019000095.

21. Zucchetti B., Shimada A.K., Katz A., et al. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast. 2019; 43: 130–4. DOI: 10.1016/j.breast.2018.12.001.

22. Gregoretti I.V., Lee Y.-M., Goodson H.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol. 2004; 338(1): 17–31. DOI: 10.1016/j.jmb.2004.02.006.

23. Johnstone R.W., Licht J.D. Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell. 2003; 4(1): 13–8. DOI: 10.1016/s1535-6108(03)00165-x.

24. Licht J.D. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene. 2001; 20(40): 5660–79. DOI: 10.1038/sj.onc.1204593.

25. Yu K.R., Espinoza D.A., Wu C., et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood. 2018; 131(11): 1195–1205. DOI: 10.1182/blood-2017-08-802033.

26. Long J., Jia M.-Y., Fang W.-Y., et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020; 135(17): 1472–83. DOI: 10.1182/blood.2019003538.

27. Shi Y., Whetstine J.R. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007; 25(1): 1–14. DOI: 10.1016/j.molcel.2006.12.010.

28. Arrowsmith C.H., Bountra C., Fish P.V, et al. Epigenetic protein families: A new frontier for drug discovery. Nat Rev Drug Discov. 2012; 11(5): 384–400. DOI: 10.1038/nrd3674.

29. Guenther M.G., Levine S.S., Boyer L.A., et al. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007; 130(1): 77–88. DOI: 10.1016/j.cell.2007.05.042.

30. McCabe M.T., Creasy C.L. EZH2 as a potential target in cancer therapy. Epigenomics. 2014; 6(3): 341–51. DOI: 10.2217/epi.14.23.

31. Bödör C., Grossmann V., Popov N., et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013; 122(18): 3165–8. DOI: 10.1182/blood-2013-04-496893.

32. McCabe M.T., Graves A.P., Ganji G., et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA. 2012; 109(8): 2989–94. DOI: 10.1073/pnas.1116418109.

33. van Galen J.C., Dukers D.F., Giroth C., et al. Distinct expression patterns of polycomb oncoproteins and their binding partners during the germinal center reaction. Eur J Immunol. 2004; 34(7): 1870–81. DOI: 10.1002/eji.200424985.

34. Béguelin W., Popovic R., Teater M., et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013; 23(5): 677–92. DOI: 10.1016/j.ccr.2013.04.011.

35. Milne T.A., Briggs S.D., Brock H.W., et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002; 10(5): 1107–17. DOI: 10.1016/S1097-2765(02)00741-4.

36. Wang X., Chen C.-W., Armstrong S.A. The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev. 2016; 36: 68–72. DOI: 10.1016/j.gde.2016.03.015.

37. Kuntimaddi A., Achille N.J., Thorpe J., et al. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 Di- and tri-methylation on target genes and transformation potential. Cell Rep. 2015; 11(5): 808–20. DOI: 10.1016/j.celrep.2015.04.004.

38. Krivtsov A.V, Feng Z., Lemieux M.E., et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008; 14(5): 355–68. DOI: 10.1016/j.ccr.2008.10.001.

39. Nguyen A.T., Taranova O., He J., et al. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011; 117(25): 6912–22. DOI: 10.1182/blood-2011-02-334359.

40. Sha L., Ayoub A., Cho U.-S., et al. Insights on the regulation of the MLL/ SET1 family histone methyltransferases. Biochim Biophys Acta Gene Regul Mech. 2020; 1863(7): 194561. DOI: 10.1016/j.bbagrm.2020.194561.

41. Hakimi M.-A., Dong Y., Lane W.S., et al. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J Biol Chem. 2003; 278(9): 7234–9. DOI: 10.1074/jbc.M208992200.

42. Harris W.J., Huang X., Lynch J.T., et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012; 21(4): 473–87. DOI: 10.1016/j.ccr.2012.03.014.

43. Blanc R.S., Richard S. Arginine methylation: The coming of age. Mol Cell. 2017; 65(1): 8–24. DOI: 10.1016/j.molcel.2016.11.003.

44. Swigut T., Wysocka J. H3K27 demethylases, at long last. Cell. 2007; 131(1): 29–32. DOI: 10.1016/j.cell.2007.09.026.

45. Zhao Q., Rank G., Tan Y.T., et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol. 2009; 16(3): 304–11. DOI: 10.1038/nsmb.1568.

46. Bedford M.T., Richard S. Arginine methylation: An emerging regulator of protein function. Mol Cell. 2005; 18(3): 263–72. DOI: 10.1016/j.molcel.2005.04.003.

47. Yang Y., Bedford M.T. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013; 13: 37–50. DOI: 10.1038/nrc3409.

48. Cui K., Zang C., Roh T.-Y., et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009; 4(1): 80–93. DOI: 10.1016/j.stem.2008.11.011.

49. Dimopoulos K., Grønbæk K. Epigenetic therapy in hematological cancers. APMIS. 2019; 127(5): 316–28. DOI: 10.1111/apm.12906.

50. Xie M., Jiang Q., Xie Y. Comparison between decitabine and azacitidine for the treatment of myelodysplastic syndrome: A meta-analysis with 1392 participants. Clin Lymphoma, Myeloma Leuk. 2015; 15(1): 22–8. DOI: 10.1016/j.clml.2014.04.010.

51. He P.F., Zhou J.D., Yao D.M., et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and metaanalysis. Oncotarget. 2017; 8(25): 41498–507. DOI: 10.18632/oncotarget.17241.

52. Garcia-Manero G., Roboz G., Walsh K., et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: Phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019; 6(6): e317–27. DOI: 10.1016/S2352-3026(19)30029-8.

53. Savona M.R., Odenike O., Amrein P.C., et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes: A multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019; 6(4): e194–203. DOI: 10.1016/S2352-3026(19)30030-4.

54. Swords R.T., Coutre S., Maris M.B., et al. Pevonedistat, a first-in-class NEDD8- activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood. 2018; 131(13): 1415–24. DOI: 10.1182/blood-2017-09-805895.

55. Suraweera A., O’Byrne K.J., Richard D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front Oncol. 2018; 8: 92. DOI: 10.3389/fonc.2018.00092.

56. San José-Enériz E., Gimenez-Camino N., Agirre X., et al. HDAC Inhibitors in acute myeloid leukemia. Cancers (Basel). 2019; 11(11): 1794. DOI: 10.3390/cancers11111794.

57. Soriano A.O., Yang H., Faderl S., et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2007; 110(7): 2302–8. DOI: 10.1182/blood-2007-03-078576.

58. Fredly H., Gjertsen B.T., Bruserud O. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics. 2013; 5(1): 12. DOI: 10.1186/1868-7083-5-12.

59. Marks P.A., Breslow R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007; 25(1): 84–90. DOI: 10.1038/nbt1272.

60. Sayar H., Cripe L.D., Saliba A.N., et al. Combination of sorafenib, vorinostat and bortezomib for the treatment of poor-risk AML: Report of two consecutive clinical trials. Leuk Res. 2019; 77: 30–3. DOI: 10.1016/j.leukres.2018.12.011.

61. Poole R.M. Belinostat: First global approval. Drugs. 2014; 74: 1543–54. DOI: 10.1007/s40265-014-0275-8.

62. Italiano A., Soria J.C., Toulmonde M., et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. Lancet Oncol. 2018; 19(5): 649–59. DOI: 10.1016/S1470-2045(18)30145-1.

63. Stein E.M., Garcia-Manero G., Rizzieri D.A., et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018; 131(24): 2662–9. DOI: 10.1182/blood-2017-12-818948.

64. Pandey M.R., Wang E.S. What potential is there for LSD1 inhibitors to reach approval for AML? Expert Opin Emerg Drugs. 2019; 24(4): 205–12. DOI: 10.1080/14728214.2019.1694001.

65. Garcia-Manero G., Montalban-Bravo G., Berdeja J.G., et al. Phase 2, randomized, double-blind study of pracinostat in combination with azacitidine in patients with untreated, higher-risk myelodysplastic syndromes. Cancer. 2017; 123(6): 994–1002. DOI: 10.1002/cncr.30533.

66. He P.-F., Zhou J.-D., Yao D.-M., et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and metaanalysis. Oncotarget. 2017; 8(25): 41498–507. DOI: 10.18632/oncotarget.17241.

67. Curran M.P. Decitabine: A review of its use in older patients with acute myeloid leukaemia. Drugs Aging. 2013; 30(6): 447–58. DOI: 10.1007/s40266-013-0084-x.

68. Odenike O. Incorporating novel approaches in the management of MDS beyond conventional hypomethylating agents. Hematology. 2017; 2017(1): 460–9. DOI: 10.1182/asheducation-2017.1.460.

69. Roboz G.J., Kantarjian H.M., Yee K.W.L., et al. Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer. 2018; 124(2): 325–34. DOI: 10.1002/cncr.31138.

70. Guo S.-Q., Zhang Y.-Z. Histone deacetylase inhibition: An important mechanism in the treatment of lymphoma. Cancer Biol Med. 2012; 9(2): 85–9. DOI: 10.3969/j.issn.2095-3941.2012.02.001.

71. He L.Z., Tolentino T., Grayson P., et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest. 2001; 108(9): 1321–30. DOI: 10.1172/JCI11537.

72. Garcia-Manero G., Tambaro F.P., Bekele N.B., et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012; 30(18): 2204–10. DOI: 10.1200/JCO.2011.38.3265.

73. Garcia-Manero G., Othus M., Pagel J.M., et al. SWOG S1203: A randomized phase III study of standard cytarabine plus daunorubicin (7+3) therapy versus idarubicin with high dose cytarabine (IA) with or without Vorinostat (IA+V) in younger patients with previously untreated acute myeloid leukemia (AML). Blood. 2016; 128(22): 901. DOI: 10.1182/blood.v128.22.901.901.

74. Walter R.B., Medeiros B.C., Gardner K.M., et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: A phase I/II study. Haematologica. 2014; 99(1): 54–9. DOI: 10.3324/haematol.2013.096545.

75. Craddock C.F., Houlton A.E., Quek L.S., et al. Outcome of azacitidine therapy in acute myeloid leukemia is not improved by concurrent vorinostat therapy but is predicted by a diagnostic molecular signature. Clin Cancer Res. 2017; 23(21): 6430–40. DOI: 10.1158/1078-0432.CCR-17-1423.

76. How J., Minden M.D., Brian L., et al. A phase I trial of two sequence-specific schedules of decitabine and vorinostat in patients with acute myeloid leukemia. Leuk Lymphoma. 2015; 56(10): 2793–802. DOI: 10.3109/10428194.2015.1018248.

77. Van Veggel M., Westerman E., Hamberg P. Clinical pharmacokinetics and pharmacodynamics of panobinostat. Clin Pharmacokinet. 2018; 57(1): 21–9. DOI: 10.1007/s40262-017-0565-x.

78. Schlenk R.F., Krauter J., Raffoux E., et al. Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: Results from two clinical trials. Haematologica. 2018; 103(1): e25–8. DOI: 10.3324/haematol.2017.172411.

79. Tan P., Wei A., Mithraprabhu S., et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood Cancer J. 2014; 4(1): e170. DOI: 10.1038/bcj.2013.68.

80. Bewersdorf J.P., Shallis R., Stahl M., et al. Epigenetic therapy combinations in acute myeloid leukemia: What are the options? Ther Adv Hematol. 2019; 10: 204062071881669. DOI: 10.1177/2040620718816698.

81. Pan D., Rampal R., Mascarenhas J. Clinical developments in epigenetic-directed therapies in acute myeloid leukemia. Blood Adv. 2020; 4(5): 970–82. DOI: 10.1182/bloodadvances.2019001245.

82. Eckschlager T., Plch J., Stiborova M., et al. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017; 18(7): 1414. DOI: 10.3390/ijms18071414.

83. Cheng Y.-C., Lin H., Huang M.-J., et al. Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res. 2007; 31(10): 1403–11. DOI: 10.1016/j.leukres.2007.03.012.

84. Kuendgen A., Schmid M., Schlenk R., et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer. 2006; 106(1): 112–119. DOI: 10.1002/cncr.21552.

85. Попа А.В., Немировченко В.С., Флейшман Е.В. и др. Ингибиторы гистондеацетилазы и ДНК-метилтрансферазы в лечении детей, больных острым миелоидным лейкозом, их эффективность и место в терапии. Российский журнал детской гематологии и онкологии. 2016; 3(4): 48–54.

86. Brown P.J., Müller S. Open access chemical probes for epigenetic targets. Future Med Chem. 2015; 7(14): 1901–17. DOI: 10.4155/fmc.15.127.

87. McCabe M.T., Mohammad H.P., Barbash O., et al. Targeting histone methylation in cancer. Cancer J (United States). 2017; 23(5): 292–301. DOI: 10.1097/PPO.0000000000000283.

88. Li B., Chng W.J. EZH2 abnormalities in lymphoid malignancies: Underlying mechanisms and therapeutic implications. J Hematol Oncol. 2019; 12: 118. DOI: 10.1186/s13045-019-0814-6.

89. Vaswani R.G., Gehling V.S., Dakin L.A., et al. Identifi cation of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifl uoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J Med Chem. 2016; 59(21): 9928–41. DOI: 10.1021/acs.jmedchem.6b01315.

90. Daigle S.R., Olhava E.J., Therkelsen C.A., et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013; 122(6): 1017–25. DOI: 10.1182/blood-2013-04-497644.

91. Alinari L., Mahasenan K.V., Yan F., et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood. 2015; 125(16): 2530–43. DOI: 10.1182/blood-2014-12-619783.

92. Jin Y., Zhou J., Xu F., et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest. 2016; 126(10): 3961–80. DOI: 10.1172/JCI85239.

93. Chan-Penebre E., Kuplast K.G., Majer C.R., et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015; 11(6): 432–7. DOI: 10.1038/nchembio.1810.

94. Adamo A., Sesé B., Boue S., et al. LSD1 regulates the balance between selfrenewal and differentiation in human embryonic stem cells. Nat Cell Biol. 2011; 13(6): 652–9. DOI: 10.1038/ncb2246.

95. Whyte W.A., Bilodeau S., Orlando D.A., et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature. 2012; 482(7384): 221–5. DOI: 10.1038/nature10805.


Для цитирования:


Карпенко Д.В., Петинати Н.А., Дризе Н.И., Бигильдеев А.Е. Роль эпигенетических модификаций ДНК и гистонов в лечении онкогематологических заболеваний. Гематология и трансфузиология. 2021;66(2):263-279. https://doi.org/10.35754/0234-5730-2021-66-2-263-279

For citation:


Karpenko D.V., Petinati N.A., Drize N.J., Bigildeev A.E. The Role of epigenetic modifications of DNA and histones in the treatment of oncohematological diseases. Russian journal of hematology and transfusiology. 2021;66(2):263-279. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-2-263-279

Просмотров: 48


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)