Preview

Russian journal of hematology and transfusiology

Advanced search

Immunoglobulin genes and stereotyped antigenic receptors in chronic lymphocytic leukemia and other lymphoproliferative diseases

https://doi.org/10.35754/0234-5730-2023-68-1-70-79

Abstract

   Introduction. The mutational status of immunoglobulin heavy chain variable region genes (IGHV) is the most important prognostic factor in chronic lymphocytic leukemia (CLL). Furthermore, a significant narrowing of the IGHV gene repertoire is found in CLL and other lymphoproliferative diseases.
   Aim — to review the publication data on the IGHV genes repertoire and mutational status in CLL and other lymphoproliferative diseases regarding their clinical significance.
   General information. Nucleotide sequence of rearranged IGHV genes is a unique marker of a tumor clone. CLL patients with unmutated IGHV genes have an extremely unfavorable disease outcome in contrast to the patients with mutated IGHV genes. Patients with mutated IGHV genes benefit from conventional immunochemotherapy, while non-mutated IGHV patients require therapy escalation with new targeted drugs. The study of IGHV genes and stereotyped antigen receptors repertoire makes possible to identify additional groups of CLL patients with specific genetic and clinical features. Stereotype receptors are also detected in other lymphoproliferative diseases, but their clinical significance has not yet been defined. However, stereotyped receptors are found to be disease-specific.

About the Authors

B. V. Biderman
National Medical Research Center for Hematology
Russian Federation

Bella V. Biderman, Cand. Sci. (Biol.), Senior Researcher

Department of Molecular Hematology

125167

Moscow



A. B. Sudarikov
National Medical Research Center for Hematology
Russian Federation

Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of Department

Department of Molecular Hematology

125167

Moscow



References

1. Agathangelidis A., Psomopoulos F., Stamatopoulos K. Stereotyped B cell receptor immunoglobulins in B cell lymphomas. Methods Mol Biol. 2019; 1956: 139–55. DOI: 10.1007/978-1-4939-9151-8_7.

2. Rosenquist R., Ghia P., Hadzidimitriou A., et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: Updated ERIC recommendations. Leukemia. 2017; 31(7): 1477–81. DOI: 10.1038/leu.2017.125.

3. Tobin G., Thunberg U., Johnson A., et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: Implicating recognition of a common antigen epitope. Blood. 2003; 101: 4952–7. DOI: 10.1182/blood-2002-11-3485.

4. Tobin G., Thunberg U., Karlsson K., et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood. 2004; 104(9): 2879–85. DOI: 10.1182/blood-2004-01-0132.

5. Widhopf G.F. 2nd, Rassenti L.Z., Toy T.L., et al. Chronic lymphocytic leukemia B cells of more than 1 % of patients express virtually identical immunoglobulins. Blood. 2004; 104(8): 2499–504. DOI: 10.1182/blood-2004-03-0818.

6. Messmer B.T., Albesiano E., Efremov D.G., et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004; 200(4): 519–25. DOI: 10.1084/jem.20040544.

7. Stamatopoulos K., Belessi C., Hadzidimitriou A., et al. Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood. 2005; 106(10): 3575– 83. DOI: 10.1182/blood-2005-04-1511.

8. Stamatopoulos K., Belessi C., Papadaki T., et al. Immunoglobulin heavy- and light-chain repertoire in splenic marginal zone lymphoma. Mol Med. 2004; 10(7- 12): 89–95. DOI: 10.2119/2005-00001.Stamatopoulos.

9. Jain P., Pemmaraju N., Ravandi F. Update on the biology and treatment options for hairy cell leukemia. Curr Treat Options Oncol. 2014; 15(2): 187–209. DOI: 10.1007/s11864-014-0285-5.

10. Navarro A., Clot G., Royo C., et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012; 72(20): 5307–16. DOI: 10.1158/0008-5472.can-12-1615.

11. Sutton L.A., Rosenquist R. The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia. Semin Cancer Biol. 2015; 34: 22–35. DOI: 10.1016/j.semcancer.2015.04.009.

12. Fais F., Ghiotto F., Hashimoto S., et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998; 102(8): 1515–25. DOI: 10.1172/JCI3009.

13. Damle R.N., Wasil T., Fais F., et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999; 94(6): 1840–7. DOI: 10.1182/blood.V94.6.1840.

14. Hamblin T.J., Davis Z., Gardiner A., et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999; 94: 1848–54. DOI: 10.1182/blood.V94.6.1848.

15. Nikitin E.A., Malakho S.G., Biderman B.V., et al. Expression level of lipoprotein lipase and dystrophin genes predict survival in B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2007; 48(5): 912–22. DOI: 10.1080/10428190701245112.

16. Ghia P., Stamatopoulos K., Belessi C., et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007; 21(1): 1–3. DOI: 10.1038/sj.leu.2404457.

17. Kröber A., Seiler T., Benner A., et al. VH mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002; 100(4): 1410–6. DOI: 10.1182/blood.V100.4.1410.h81602001410_1410_1416.

18. Davis Z., Forconi F., Parker A., et al. The outcome of chronic lymphocytic leukaemia patients with 97 % IGHV gene identity to germline is distinct from cases with 97 % identity and similar to those with 98 % identity. Br J Haematol. 2016; 173(1): 127–36. DOI: 10.1111/bjh.13940.

19. Agathangelidis A., Chatzidimitriou A., Chatzikonstantinou T., et al.; ERIC, the European Research Initiative on CLL. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: The 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia. 2022; 36(8): 1961–8. DOI: 10.1038/s41375-022-01604-2.

20. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016; 17(6): 779–90. DOI: 10.1016/S1470-2045(16)30029-8.

21. Baliakas P., Hadzidimitriou A., Sutton L., et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: A retrospective multicentre study. Lancet Haematol. 2014; 1(2): e74–84. DOI: 10.1016/S2352-3026(14)00005-2.

22. Baliakas P., Agathangelidis A., Hadzidimitriou A., et al. Not all IGHV3-21 chronic lymphocytic leukemias are equal: Prognostic considerations. Blood. 2015; 125(5): 856–9. DOI: 10.1182/blood-2014-09-600874.

23. Jeromin S., Haferlach C., Dicker F., et al. Differences in prognosis of stereotyped IGHV3-21 chronic lymphocytic leukaemia according to additional molecular and cytogenetic aberrations. Leukemia. 2016; 30(11): 2251–3. DOI: 10.1038/leu.2016.189.

24. Agathangelidis A., Chatzidimitriou A., Gemenetzi K., et al. Higher-order connections between stereotyped subsets: Implications for improved patient classification in CLL. Blood. 2021; 137(10): 1365–76. DOI: 10.1182/blood.2020007039.

25. Baliakas P., Moysiadis T., Hadzidimitriou A., et al. Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica. 2019; 104(2): 360–9. DOI: 10.3324/haematol.2018.195032.

26. Marinelli M., Ilari C., Xia Y., et al. Immunoglobulin gene rearrangements in Chinese and Italian patients with chronic lymphocytic leukemia. Oncotarget. 2016; 7(15): 20520–31. DOI: 10.18632/oncotarget.7819.

27. Wu S.-J., Lin Ch.-T., Agathangelidis A., et al. Distinct molecular genetics of chronic lymphocytic leukemia in Taiwan: Clinical and pathogenetic implications. Haematologica. 2017; 102(6): 1085–90. DOI: 10.3324/haematol.2016.157552.

28. Farsangi M.H., Jeddi-Tehrani M., Sharifian R.A., et al. Analysis of the immunoglobulin heavy chain variable region gene expression in Iranian patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2007; 48(1): 109–16. DOI: 10.1080/10428190601043310.

29. Biderman B.V., Likold E.B., Smirnova S.Yu., et al. Repertoire of rearranged immunoglobulin heavy chain genes in Russian patients with B-cell lymphoproliferative diseases. Clin Lymphoma Myeloma Leuk. 2021; 21(12): e938–45. DOI: 10.1016/j.clml.2021.07.005.

30. Stilgenbauer S., Schnaiter A., Paschka P., et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: Results from the CLL8 trial. Blood. 2014; 123(21): 3247–54. DOI: 10.1182/blood-2014-01-546150.

31. Ghia P., Pluta A., Wach M., et al. ASCEND: Phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020; 38(25): 2849–61. DOI: 10.1200/JCO.19.03355.

32. Moreno C., Greil R., Demirkan F., et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): A multicentre, randomised, openlabel, phase 3 trial. Lancet Oncol. 2019; 20(1): 43–56. DOI: 10.1016/S1470-2045(18)30788-5.

33. Munir T., Brown J.R., O’Brien S., et al. Final analysis from RESONATE: Up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019; 94(12): 1353–63. DOI: 10.1002/ajh.25638.

34. Burger J.A., Barr P.M., Robak T., et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020; 34(3): 787–98. DOI: 10.1038/s41375-019-0602-x.

35. Seymour J.F., Kipps T.J., Eichhorst B., et al. Venetoclax–Rituximab in relapsed or refractory chronic lymphocytic leukemia. New Engl J Med. 2018; 378(12): 1107–20. DOI: 10.1056/NEJMoa1713976.

36. Fischer K., Al-Sawaf O., Bahlo J., et al. Venetoclax and Obinutuzumab in patients with CLL and coexisting conditions. New Engl J Med. 2019; 380(23): 2225–36. DOI: 10.1056/NEJMoa1815281.

37. Clinical recommendations. Chronic lymphocytic leukemia/small lymphocytic lymphoma. 2019. URL: https://www.blood.ru/clinic/praktikuyushchemu-vrachu/klinicheskie-rekomendatsii.html. (In Russian).

38. Baliakas P., Hadzidimitriou A., Sutton L.A., et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015; 29(2): 329–36. DOI: 10.1038/leu.2014.196.

39. Sutton L.A., Young E., Baliakas P., et al. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica. 2016; 101(8): 959–67. DOI: 10.3324/haematol.2016.141812.

40. Agathangelidis A., Darzentas N., Hadzidimitriou A., et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: A molecular classification with implications for targeted therapies. Blood. 2012; 119(19): 4467–75. DOI: 10.1182/blood-2011-11-393694.

41. Malcikova J., Stalika E., Davis Z., et al. The frequency of TP53 gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. Br J Haematol. 2014; 166(4): 621–5. DOI: 10.1111/bjh.12893.

42. Strefford J.C., Sutton L.A., Baliakas P., et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: The case of SF3B1 and subset #2. Leukemia. 2013; 27(11): 2196–9. DOI: 10.1038/leu.2013.98.

43. Kanduri M., Marincevic M., Halldórsdóttir A.M., et al. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics. 2012; 7(12): 1435–42. DOI: 10.4161/epi.22901.

44. Marincevic M., Mansouri M., Kanduri M., et al. Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Haematologica. 2010; 95(12): 2072–9. DOI: 10.3324/haematol.2010.028639.

45. Papakonstantinou N., Ntoufa S., Chartomatsidou E., et al. Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol Med. 2013; 19(1): 115–23. DOI: 10.2119/molmed.2013.00005.

46. Maura F., Cutrona G., Mosca L., et al. Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(11): 3150–8. DOI: 10.3109/104281 94.2015.1028051.

47. Rossi D., Spina V., Bomben R., et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood. 2013; 121(24): 4902–5. DOI: 10.1182/blood-2013-02-486209.

48. Biderman B.V., Severina N., Likold E.B., et al. Genetic lesions in Russian CLL patients with the most common stereotyped antigen receptors. Blood. 2020. 136(S1): 16–7. DOI: 10.1182/blood-2020-140663.

49. Jaramillo S., Agathangelidis A., Schneider C., et al. Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: Analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica. 2019; 105(11): 2598–607. DOI: 10.3324/haematol.2019.231027.

50. Baliakas P., Mattsson M., Hadzidimitriou A., et al. No improvement in longterm survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica. 2018; 103(4): e158–61. DOI: 10.3324/haematol.2017.182634.

51. Xochelli A., Baliakas P., Kavakiotis I. Chronic lymphocytic leukemia with mutated IGHV4-34 receptors: shared and distinct immunogenetic features and clinical outcomes. Clin Cancer Res. 2017; 23(17): 5292–301. DOI: 10.1158/1078-0432.CCR-16-3100.

52. Orchard J., Garand R., Davis Z., et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003; 101(12): 4975–81. DOI: 10.1182/blood-2002-06-1864.

53. Hadzidimitriou A., Agathangelidis A., Darzentas N., et al. Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood. 2011; 118(11): 3088–95. DOI: 10.1182/blood-2011-03-343434.

54. Bikos V., Darzentas N., Hadzidimitriou A., et al. Over 30 % of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: Ontogenetic implications. Leukemia. 2012; 26(7): 1638–46. DOI: 10.1038/leu.2012.3.

55. Hockley S.L., Else M, Morilla A., et al. The prognostic impact of clinical and molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma. Br J Haematol. 2012; 158(3): 347–54. DOI: 10.1111/j.1365-2141.2012.09163.x.

56. Rinaldi A., Forconi F., Arcaini L., et al. Immunogenetics features and genomic lesions in splenic marginal zone lymphoma. Br J Haematol. 2010; 151(5): 435–9. DOI: 10.1111/j.1365-2141.2010.08347.x.

57. Forconi F., Sozzi E., Cencini E., et al. Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to single-agent cladribine and with more aggressive behavior. Blood. 2009; 114(21): 4696–702. DOI: 10.1182/blood-2009-03-212449.

58. Jain P., Pemmaraju N., Ravandi F. Update on the biology and treatment options for hairy cell leukemia. Curr Treat Options Oncol. 2014; 15(2): 187–209. DOI: 10.1007/s11864-014-0285-5.

59. Xi L., Arons E., Navarro W., et al. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012; 119(14): 3330– 2. DOI: 10.1182/blood-2011-09-379339.

60. Zibellini S., Capello D., Forconi F., et al. Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica. 2010. 95(10): 1792–6. DOI: /10.3324/haematol.2010.025437.

61. Hallek M., Cheson B.D., Catovsky D., et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018; 131(25): 2745–60. DOI: 10.1182/blood-2017-09-806398.


Review

For citations:


Biderman B.V., Sudarikov A.B. Immunoglobulin genes and stereotyped antigenic receptors in chronic lymphocytic leukemia and other lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2023;68(1):70-79. (In Russ.) https://doi.org/10.35754/0234-5730-2023-68-1-70-79

Views: 3024


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)