Cytogenetic and molecular genetic diagnostics in oncohematological disorders: a position paper of the Organization of Molecular Geneticists in Oncology and Oncohematology
https://doi.org/10.35754/0234-5730-2023-68-1-129-143
Abstract
Introduction. Currently, there is no unequivocal opinion on the optimal list of studies for the genetic diagnosis of oncohematological disorders in children and adults. These discrepancies are due to the limited technological capabilities of laboratories, the rapid development of science, and a significant expansion of the range of new molecular markers, that are attractive, but only for a limited group of patients. Moreover, in modern conditions of limited access to resources, it seems important to bring desires, interests and opportunities to a common denominator.
Aim — to develop unified approaches to the cytogenetic and molecular genetic diagnosis of oncohematological diseases in children and adults based on the consensus opinion of the panel of experts.
Main findings. The review proposes the arrangement of cytogenetic and molecular genetic diagnostic tests in oncohematological disorders in children and adults into 3 categories depending on the frequency of genetic aberrations, the study complexity and the prognostic impact. Based on this and taking into account the diagnosis and age of patients, the minimal and optimal lists of clinically significant parameters and research markers were identified. The basic preanalytical principles for conducting cytogenetic and molecular genetic studies in oncohematology are pointed out. A brief description of a conventional cytogenetic study and a polymerase chain reaction for the diagnosis of oncohematological diseases is given. The paper also focused on the need for reference diagnostics of cytogenetic and molecular genetic studies in oncohematology. The article is addressed to the specialists in the field of laboratory genetics, clinical laboratory diagnostics, but may also be of interest to hematologists, pediatric oncologists and doctors of related branches.
Keywords
About the Authors
G. А. TsaurRussian Federation
Grigory A. Tsaur, Dr. Sci. (Med), Head of the Laboratory, Leading Researcher, Associate Professor
Laboratory of Molecular Biology, Immunophenotyping and Pathology
620149
Laboratory of Cellular Therapy for Oncohematological Disorders
620026
Department of Clinical Laboratory Diagnostics and Bacteriology
620028
Ekaterinburg
Yu. V. Olshanskaya
Russian Federation
Yulia V. Olshanskaya, Cand. Sci. (Med), Head of the Laboratory
117198
Laboratory of Cytogenetics and Molecular Genetics
Moscow
T. N. Obukhova
Russian Federation
Tatiana N. Obukhova, Cand. Sci. (Med.), Head of Laboratory
Karyology Laboratory
125167
125167
Moscow
A. B. Sudarikov
Russian Federation
Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Department
125167
Moscow
O. V. Lazareva
Russian Federation
Olga V. Lazareva, Cand. Sci. (Med), Head of the Department
Department of Regional and Interdepartmental Cooperation for the Provision of Medical Hematology Care
125167
Moscow
T. L. Gindina
Russian Federation
Tatiana L. Gindina, Dr. Sci. (Med.), Head of the Laboratory
Laboratory of Cytogenetics and Diagnostics of Genetic Disorders
197022
Saint Petersburg
References
1. Hastings R., Howell R., Betts D., et al. A common European framework for quality assessment for constitutional, acquired and molecular cytogenetic investigations. European cytogeneticists association newsletter. 2012. URL: https://www.e-c-a.eu/files/downloads/Guidelines/E.C.A._General_Guidelines_Version-2.0.pdf.
2. Lazareva O.V., Maloletkina E.S., Tuaeva A.A., et al. Technology for assessing the quality of medical care on the profile of “hematology” in the regions the Russian Federation during offsite events. Voprosy onkologii. 2022; 68(S3): 60–1. (In Russian).
3. Maloletkina E.S, Lazareva O.V., Parovichnikova E.N. Availability of the use of cytogenetic (CG) and molecular genetic studies (MG) at the expense of compulsory medical insurance (CHI) in the provision of specialized medical care (SMC) to patients with oncohematological disorders. Evrazijskij onkologicheskij zhurnal. 2022; 10(S2): 716–7. (In Russian).
4. The number of resident population of the Russian Federation by municipalities as of January 1, 2022, excluding the results of the All-Russian Population Census 2020 (2021). URL: https://rosstat.gov.ru/compendium/document/13282. (In Russian).
5. Davé B., Sanger W. Genomic microarray technologies for the cytogenetics laboratory. In: The AGT Cytogenetics Laboratory Manual. Eds M.S. Arsham, M.J. Barch, H.J. Lawce. 2017. DOI: 10.1002/9781119061199.ch18.
6. Demidova I.A., Tsaur G.A. Filipenko M.L., et al. Rules for conducting cytogenetic and molecular genetic studies in oncology and oncohematology. Moscow; 2022. URL: https://oncogenetic.org/organization-of-laboratory-activities/genetic-lab-rules/. (In Russian).
7. Bruford E., Antonescu C., Carroll A., et al. HUGO Gene Nomenclature Committee (HGNC) recommendations for the designation of gene fusions. Leukemia. 2021; 35(11):3040-3043. DOI: 10.1038/s41375-021-01436-6.
8. Clinical recommendations No. 529 «Acute lymphoblastic leukemia. Children». The list of clinical guidelines of the Ministry of Healthcare of the Russian Federation. https://cr.minzdrav.gov.ru/schema/529_1 (In Russian).
9. Clinical recommendations No. 496 “Acute lymphoblastic leukemia”. URL: https://cr.minzdrav.gov.ru/schema/496_1. (In Russian).
10. Clinical recommendations No. 131 “Acute myeloid leukemias”. URL: https://cr.minzdrav.gov.ru/schema/131_1. (In Russian).
11. Clinical recommendations No. 586 “Acute myeloid leukemias. Children”. URL: https://cr.minzdrav.gov.ru/schema/586_1. (In Russian).
12. Clinical recommendations No. 132 “Acute promyelocytic leukemia”. URL: https://cr.minzdrav.gov.ru/schema/132_1. (In Russian).
13. Clinical recommendations No. 134 “Chronic lymphocytic leukemia/small lymphocyte lymphoma”. URL: https://cr.minzdrav.gov.ru/schema/134_1. (In Russian).
14. Clinical recommendations No. 129 “Aggressive non-follicular lymphomas — diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, Burkitt’s lymphoma”. URL: https://cr.minzdrav.gov.ru/schema/129_2. (In Russian).
15. Clinical recommendations No. 141 “Marginal zone lymphoma”. URL: https://cr.minzdrav.gov.ru/schema/137_1. (In Russian).
16. Clinical recommendations No. 132 “Myelodysplastic syndrome”. URL: https://cr.minzdrav.gov.ru/schema/141_1. (In Russian).
17. Clinical recommendations No. 142 “Chronic myeloid leukemia”. URL: https://cr.minzdrav.gov.ru/schema/142_1. (In Russian).
18. Clinical recommendations No. 144 “Multiple myeloma”. URL: https://cr.minzdrav.gov.ru/schema/144_1. (In Russian).
19. Clinical recommendations No. 130 “Hairy cell leukemia”. URL: https://cr.minzdrav.gov.ru/schema/130_1. (In Russian).
20. Clinical recommendations No. 140 “Waldenstrom’s macroglobulinemia”. URL: https://cr.minzdrav.gov.ru/schema/140_1. (In Russian).
21. Clinical recommendations “Ph-negative Myeloproliferative neoplasms”. URL: https://npngo.ru/biblioteka/klinicheskie_rekomendatsii__2022_god_?page=3. (In Russian).
22. Clinical recommendations “Mastocytosis”. URL: https://npngo.ru/biblioteka/klinicheskie_rekomendatsii__2022_god_?page=2. (In Russian).
23. Weidmann E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia. 2000; 14(6): 991–7. DOI: 10.1038/sj.leu.2401784.
24. Yabe M, Miranda R, Medeiros L. Hepatosplenic T-cell lymphoma: A review of clinicopathologic features, pathogenesis, and prognostic factors. Hum Pathol. 2018; 74: 5–16. DOI: 10.1016/j.humpath.2018.01.005.
25. Khoury J., Solary E., Abla O., et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Myeloid and histiocytic/ dendritic neoplasms. Leukemia. 2022; 36(7): 1703–19. DOI: 10.1038/s41375-022-01613-1.
26. Alaggio R., Amador C., Anagnostopoulos I., et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia. 2022; 36(7): 1720–48. DOI: 10.1038/s41375-022-01620-2.
27. Arber D., Orazi A., Hasserjian R., et al. International Consensus Classification of myeloid neoplasms and acute leukemia: Integrating morphological, clinical, and genomic data. Blood. 2022; 140(11): 1200–28. DOI: 10.1182/blood.2022015850.
28. Campo E., Jaffe S., Cook J.R., et al. The International Consensus Classification of mature lymphoid neoplasms: A report from the Clinical Advisory Committee. Blood. 2022; 140(11): 1229–53. DOI: 10.1182/blood.2022015851.
29. Gindina T.L., Mamaev N.N., Bondarenko S.N., et al. Results of allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia with t(8;21)(q22;q22) / RUNX1-RUNX1T1 and additional cytogenetic abnormalities. Klinicheskaya onkogematologiya. 2016; 9(2): 148–54. DOI: 10.21320/2500-2139-2016-9-2-148-154. (In Russian).
30. Tsaur G.A., Olshanskaya Yu.V., Druy A.E. BCR-ABLl-like pediatric acute lymphoblastic leukemia. Voprosy Gematologii/Onkologii I Immunopatologii v pediatrii. 2019; 18(1): 112–26. DOI: 10.24287/1726-1708-2019-18-1-112-126. (In Russian).
31. Tsaur G.A. Riger T.O., Popov A.M., et al. Prognostic significance of various 11q23/KMT2A rearrangements in infants with acute lymphoblastic leuekemia. Voprosy Gematologii/Onkologii I Immunopatologii v pediatrii. 2021; 20(1): 27–39. DOI: 10.24287/1726-1708-2021-20-1-27-39. (In Russian).
32. Olshanskaya Yu.V., Kazakova A.N., Chervova A.A., et al. Intrachromosomal amplification of chromosome 21 (iAMP21) is the marker of unfavorable prognosis in childhood B-cell precursor acute lymphoblastic leukemia. Voprosy Gematologii/Onkologii I Immunopatologii v pediatrii. 2018; 17(1): 37–45. DOI: 10.24287/1726-1708-2018-17-1-37-45. (In Russian).
33. Olshanskaya Yu.V., Soldatkina O.I., Nikitin E.N., et al. A hypodiploid karyotype in childhood B-cell precursor acute lymphoblastic leukemia. Voprosy Gematologii/Onkologii I Immunopatologii v pediatrii. 2021; 20(2): 97–110. DOI: 10.24287/1726-1708-2021-20-2-97-110. (In Russian).
34. Kislitsyna M.A., Obukhova T.N., Alimova G.A., et al. Efficacy of oligonucleotide DSP30 in combination with Interleukin-2 for the detection of chromosomal aberrations in patients with chronic lymphocytic leukemia. Gematologiya i transfuziologiya. 2019; 64(1): 21–34. DOI: 10.35754/0234-5730-2019-64-1-21-34. (In Russian).
35. Abramova T.V., Obukhova T.N., Gribanova E.O., et al. Structure and significance of cytogenetic abnormalities in patients with multiple myeloma. Gematologiya i transfuziologiya. 2021; 66(1): 54–67. DOI: 10.35754/0234-5730-2021-66-1-54-67. (In Russian).
36. Obukhova T.N., Kislova M.I., Nikitin E.A., et al. Structure and prognostic significance of 13q14 deletion in chronic lymphocytic leukemia. Gematologiya i transfuziologiya. 2022; 67(1): 75–89. DOI: 10.35754/0234-5730-2022-67-1-75-89. (In Russian).
37. Hallek M., Cheson B.D., Catovsky D., et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018; 131(25): 2745–60. DOI: 10.1182/blood-2017-09-806398.
38. Mrózek K., Eisfeld A.K., Kohlschmidt J., et al. Complex karyotype in de novo acute myeloid leukemia: Typical and atypical subtypes differ molecularly and clinically. Leukemia. 2019; 33(7): 1620–34. DOI: 10.1038/s41375-019-0390-3.
39. Branford S., Wang P., Yeung D., et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018; 132(9): 948–61. DOI: 10.1182/blood-2018-02-832253.
40. Baliakas P., Jeromin S., Iskas M., et al. Cytogenetic complexity in chronic lymphocytic leukemia: Definitions, associations, and clinical impact. Blood. 2019; 133(11): 1205–16. DOI: 10.1182/blood-2018-09-873083.
41. Swerdlow S., Campo E., Harris N., et al. WHO classification of tumours of haematopoietic and lymphoid tissues (revised 4th edition). Lion: IARC; 2017: 216–21.
42. Leeksma A.C., Baliakas P., Moysiadis T., et al. Genomic arrays identify highrisk chronic lymphocytic leukemia with genomic complexity: A multicenter study. Haematologica. 2021; 106(1): 87–97. DOI: 10.3324/haematol.2019.239947.
43. Jain P., Wang M.L. Mantle cell lymphoma in 2022 — A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol. 2022; 97(5): 638–56. DOI: 10.1002/ajh.26523.
44. Cohen J.B., Ruppert A.S., Heerema N.A., et al. Complex karyotype is associated with aggressive disease and shortened progression-free survival in patients with newly diagnosed mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2015; 15(5): 278–85. DOI: 10.1016/j.clml.2014.12.012.
45. Eskelund C.W., Dahl C., Hansen J.W., et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017; 130(17): 1903–10. DOI: 10.1182/blood-2017-04-779736.
46. Parrilla Castellar E., Jaffe E., Said J., et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014; 124(9): 1473–80. DOI: 10.1182/blood-2014-04-571091.
47. Walker B., Mavrommatis K., Wardell C., et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019; 33(1): 159–70. DOI: 10.1038/s41375-018-0196-8.
48. Xia Y., Zhang X. The Spectrum of MYC alterations in diffuse large B-cell lymphoma. Acta Haematol. 2020; 143(6): 520–8. DOI: 10.1159/000505892.
49. Hallek M., Al‐Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol. 2021; 96(12): 1679–705. DOI: 10.1002/ajh.26367.
50. Mikhail F.M., Heerema N.A., Rao K.W., et al. Section E6.1-6.4 the ACMG technical standards and guidelines: Chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. Genet Med. 2016; 18(6): 635–42. DOI: 10.1038/gim.2016.50.
51. Gindina T.L., Mamaev N.N., Baykov V.V., et al. New сytogenetic approaches in patients with primary myelofibrosis. Klinicheskaya oncogematologiya. 2016; 9(1): 61–9. DOI: 10.21320/2500-2139-2016-9-1-61-69. (In Russian).
52. Heerema N. Cytogenetic analysis of hematologic malignant diseases. In: The AGT Cytogenetics Laboratory Manual. 4th edition. Eds M.S. Arsham, M.J. Barch, H.J. Lawce. 2017. DOI: 10.1002/9781119061199.ch11.
53. Cytogenetic dosimetry: Applications in preparedness for and response to radiation emergencies (EPR-Biodosimetry 2011). Vienna: International atomic energy agency; 2014. (In Russian).
54. Hui E., Wan T., Ng M. Chromosome preparation for myeloid malignancies. Methods Mol Biol. 2017; 1541: 11–7. DOI: 10.1007/978-1-4939-6703-2_2.
55. Shago M. Chromosome preparation for acute lymphoblastic leukemia. Methods Mol Biol. 2017; 1541: 19–31. DOI: 10.1007/978-1-4939-6703-2_3.
56. Rack K., van den Berg E., Haferlach C., et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia. 2019; 33(8): 1851–67. DOI: 10.1038/s41375-019-0378-z.
57. Koczkodaj D., Filip A. Chromosome preparation for chronic lymphoid malignancies. Method Mol Biol. 2017; 1541: 33–41. DOI: 10.1007/978-1-4939-6703-2_4.
58. Decker T., Schneller F., Sparwasser T., et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood. 2000; 95(3): 999–1005. DOI: 10.1182/blood.V95.3.999.003k10_999_1006.
59. McGowan-Jordan J., Hastings R.J., Moore S. (ed.). An international system for human cytogenomic nomenclature (2020). Karger, 2020. DOI: 10.1159/isbn.978-3-318-06867-2.
60. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993; 15(3): 532–4, 536–7.
61. Esser K.-H., Marx W., Lisowsky T. maxXbond: First regeneration system for DNA binding silica matrices. Nat Methods. 2006; 3(1): 1–2. DOI: 10.1038/nmeth845.
62. van Dongen J., Macintyre E., Gabert J., et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia. 1999; 13(12): 1901–28. DOI: 10.1038/sj.leu.2401592.
63. Beillard E., Pallisgaard N., van der Velden V., et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) — A Europe against cancer program. Leukemia. 2003; 17(12): 2474–86. DOI: 10.1038/sj.leu.2403136.
64. Gabert J., Beillard E., van der Velden V., et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia — A Europe Against Cancer program. Leukemia. 2003; 17(12): 2318–57. DOI: 10.1038/sj.leu.2403135.
65. Cross N., White H., Müller M., et al. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012; 26(10): 2172–5. DOI: 10.1038/leu.2012.104.
Supplementary files
![]() |
1. Supplement (Tables 3-10) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(237KB)
|
Indexing metadata ▾ |
![]() |
2. Table 3. Recommended cytogenetic and molecular genetic studies of acute leukemia and myelodysplastic syndrome in infants and children under 18 years of age based on the diagnosis, and the complexity of the tests performed by the laboratory (composed according to the literature [8, 11, 25-28, 30-33, 41] with additions) | |
Subject | ||
Type | Research Instrument | |
Download
(107KB)
|
Indexing metadata ▾ |
![]() |
3. Table 4. Recommended cytogenetic and molecular genetic studies of acute leukemia in adults based on the complexity of the tests performed by the laboratory (composed according to the literature [9, 10, 25-30, 38, 41] with additions) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(87KB)
|
Indexing metadata ▾ |
![]() |
4. Table 5. Recommended cytogenetic and molecular genetic studies of myelodysplastic syndrome in adults based on the complexity of the tests performed by the laboratory (composed according to the literature [16, 25-28, 41] with additions) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(69KB)
|
Indexing metadata ▾ |
![]() |
5. Table 6. Recommended cytogenetic and molecular genetic studies of systemic mastocytosis based on the complexity of the tests performed by the laboratory (composed according to the literature [22, 25-28, 41] with additions) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(68KB)
|
Indexing metadata ▾ |
![]() |
6. Table 7. Molecular genetic studies for the diagnosis of myeloid neoplasms with germline predisposition (composed according to the literature [11, 25-28, 41]) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(61KB)
|
Indexing metadata ▾ |
![]() |
7. Table 8. Cytogenetic and molecular genetic studies for the diagnosis of myeloid neoplasms regardless of patient age (composed according to the literature [17, 21, 25-28, 39, 41] with additions) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(81KB)
|
Indexing metadata ▾ |
![]() |
8. Table 9. Cytogenetic and molecular genetic studies for the diagnosis of mature lymphoid neoplasms regardless of patient age (composed according to the literature [13-15, 18-20, 23-28, 34-37,40-49]) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(101KB)
|
Indexing metadata ▾ |
![]() |
9. Table 10. The optimal methods for minimal residual disease monitoring in various oncohematological disorders regardless of patient age | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(81KB)
|
Indexing metadata ▾ |
Review
For citations:
Tsaur G.А., Olshanskaya Yu.V., Obukhova T.N., Sudarikov A.B., Lazareva O.V., Gindina T.L. Cytogenetic and molecular genetic diagnostics in oncohematological disorders: a position paper of the Organization of Molecular Geneticists in Oncology and Oncohematology. Russian journal of hematology and transfusiology. 2023;68(1):129-143. (In Russ.) https://doi.org/10.35754/0234-5730-2023-68-1-129-143