Preview

Russian journal of hematology and transfusiology

Advanced search

THE ROLE OF IKZF1 DELETIONS IN ADULT PH-NEGATIVE AND PH-POSITIVE B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA PATIENTS TREATED IN RUSSIAN ACUTE LYMPHOBLASTIC LEUKEMIA STUDY

https://doi.org/10.25837/HAT.2018.80..1..002

Abstract

The aim of the study was to investigate the role of IKZF1 deletions in adult patients with Ph-negative (Ph–) and Ph-positive (Ph+) B-cell acute lymphoblastic leukemia (ALL) who participated in the Russian Acute Lymphoblastic Leukemia (RALL) multicenter study. Our study included 67 patients with newly diagnosed B-cell ALL (49 Ph– and 18 Ph+ cases). Patients with Ph– B-cell ALL were treated according to RALL-2009 and RALL-2016 protocols and were followed up for a median of 18.1 months (range 1.5–93.4 months). Patients with Ph+ B-cell ALL were treated according to RALL- 2009 and RALL-2012 protocols with addition of tyrosine kinase inhibitors and were followed up for a median of 21.2 months (range 3.53–91.77 months). Intragenic deletions of IKZF1 were detected using breakpoint-specific fluorescent multiplex polymerase chain reaction. They were more frequently found in patients with Ph+ ALL (n = 10, 56%) than in patients with Ph– ALL (n = 9, 18%; p = 0.0074). No statistically significant association between IKZF1 deletions and age, sex, initial WCC of over 30 × 109/L, LDH above 750 U/mL, splenomegaly or neuroleukemia was observed. Notably, an expression of both myeloid antigens (MyAg) CD13 and СD33 was detected in almost half (n = 4,44%) of the Ph– ALL patients with IKZF1 deletions compared to only 1 patient (2.5%) without IKZF1 deletions (p = 0.0027). The presence of IKZF1 mutations was associated with persistence of minimal residual disease at 2 and 4 months of treatment, with higher leukemic cell counts; however, there seemed to be no observable differences in the long-term results of therapy regardless of whether or not IKZF1 mutations were present. Thus IKZF1 mutations in our study did not seem to be prognostically valuable for either Ph+ B-cell ALL or Ph– B-cell ALL, although they were shown to be associated with a delayed tumor clearance in patients with Ph– B-cell ALL.

About the Authors

G. A. Baskhaeva
National Research Center for Hematology, Moscow
Russian Federation
Baskhaeva Galina A., hematologist, National Research Center for Hematology, Moscow, 125167


E. N. Parovichnikova
National Research Center for Hematology, Moscow
Russian Federation


B. V. Biderman
National Research Center for Hematology, Moscow
Russian Federation


O. A. Gavrilina
National Research Center for Hematology, Moscow
Russian Federation


Yu. O. Davidova
National Research Center for Hematology, Moscow
Russian Federation


M. Yu. Drokov
National Research Center for Hematology, Moscow
Russian Federation


K. I. Zarubina
National Research Center for Hematology, Moscow
Russian Federation


I. A. Lukyanova
National Research Center for Hematology, Moscow
Russian Federation


V. V. Troitskaya
National Research Center for Hematology, Moscow
Russian Federation


A. N. Sokolov
National Research Center for Hematology, Moscow
Russian Federation


I. S. Piskunova
National Research Center for Hematology, Moscow
Russian Federation


E. A. Stepanova
National Research Center for Hematology, Moscow
Russian Federation


S. A. Smirnova
National Research Center for Hematology, Moscow
Russian Federation


A. B. Sudarikov
National Research Center for Hematology, Moscow
Russian Federation


I. V. Galtseva
National Research Center for Hematology, Moscow
Russian Federation


T. N. Obukhova
National Research Center for Hematology, Moscow
Russian Federation


V. G. Savchenko
National Research Center for Hematology, Moscow
Russian Federation


References

1. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016; 101:407—416.

2. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukemia. Lancet 2013; 381:1—27.

3. Bassan R, Spinelli O, Oldani E et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 2015; 113:4153—4163.

4. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011; 29:532—543.

5. Paul S, Kantarjian H, Jabbour EJ. Adult Acute Lymphoblastic Leukemia. Mayo Clin Proc 2016; 91:1645—1666.

6. Issa GC, Kantarjian HM, Yin CC et al. Prognostic impact of pretreatment cytogenetics in adult Philadelphia chromosome–negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer 2017; 123:459—467.

7. Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446:758—764.

8. Iacobucci I, Iraci N, Messina M et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic Leukemia. PLoS One 2012; 7:1—10.

9. Mullighan CG, Miller CB, Radtke I et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453:110—114.

10. Nakayama H, Ishimaru F, Avitahl N et al. Decreases in Ikaros activity correlate with blast crisis in patients with chronic myelogenous leukemia. Cancer Res 1999; 59:3931—3934.

11. Buitenkamp TD, Pieters R, Gallimore NE et al. Outcome in children with Down’s syndrome and acute lymphoblastic leukemia: Role of IKZF1 deletions and CRLF2 aberrations. Leukemia 2012; 26:2204—2211.

12. Kuiper RP, Waanders E, Van Der Velden VHJ et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24:1258—1264.

13. Waanders E, Van Der Velden VHJ, Van Der Schoot CE et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011; 25:254—258.

14. Caye A, Beldjord K, Mass-Malo K et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013; 98:597—601.

15. Dorge P, Meissner B, Zimmermann M et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2013; 98:428—432.

16. Kushner BH, LaQuaglia MP, Wollner N et al. Desmoplastic small round-cell tumor: Prolonged progression-free survival with aggressive multimodality therapy. J Clin Oncol 1996; 14:1526—1531.

17. Beldjord K, Chevret S, Asnafi V et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood 2014; 123:3739—3750.

18. Olsson L, Johansson B. Ikaros and leukaemia. Br J Haematol 2015; 169:479—491.

19. Cortes M, Wong E, Koipally J et al. Control of lymphocyte by the lkaros gene family. Curr Opin Immunol 1999; 11:167—171.

20. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and Ikaros. Nat Rev Immunol 2002; 2:162—174.

21. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 1994; 14:8292—8303.

22. Dovat S, Editor S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011; 2:126—131.

23. Mullighan C, Su X, Zhang J et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360:470—480.

24. Roberts KG, Gu Z, Payne-Turner D et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol 2017; 35:394—401.

25. Roberts KG, Li Y, Payne-Turner D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371:1005—1015.

26. Clappier E, Grardel N, Bakkus M et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: Results of the EORTC Children’s Leukemia Group study 58951. Leukemia 2015; 29:2154—2161.

27. Olsson L, Ivanov Ofverholm I, Noren-Nystrom U et al. The clinical impact of IKZF1 deletions in paediatric B-cell precursor acute lymphoblastic leukaemia is independent of minimal residual disease stratification in Nordic Society for Paediatric Haematology and Oncology treatment protocols used between 1992 and 2013. Br J Haematol 2015; 170:847—858.

28. Van der Veer A, Zaliova M, Mottadelli F et al. IKZF1 status as a prognostic feature in BCR-ABL1 — positive childhood ALL. Blood 2014; 123:1691—1699.

29. Van der Veer A, Waanders E, Pieters R et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013; 122:2622— 2629.

30. Olsson L, Castor A, Behrendtz M et al. Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011. Leukemia 2014; 28:302—310.

31. Asai D, Imamura T, Suenobu S et al. IKZF1 deletion is associated with a poor outcome in pediatric B-cell precursor acute lymphoblastic leukemia in Japan. Cancer Med 2013; 2:412—419.

32. Yao Q, Liu K, Gale RP et al. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia. BMC Cancer 2016; 16:269.

33. Fang Q, Zhao X, Li Q et al. IKZF1 alterations and expression of CRLF2 predict prognosis in adult Chinese patients with B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2017; 58:127—137.

34. Ribera J, Morgades M, Zamora L et al. Prognostic significance of copy number alterations in adolescent and adult patients with precursor B acute lymphoblastic leukemia enrolled in PETHEMA protocols. Cancer 2015; 121:3809—3817.

35. Kim M, Park J, Kim DW et al. Impact of IKZF1 deletions on long-term outcomes of allo-SCT following imatinib-based chemotherapy in adult Philadelphia chromosome-positive ALL. Bone Marrow Transplant 2015; 50:354—362.

36. Kobitzsch B, Gokbuget N, Schwartz S et al. Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia. Haematologica 2017; 102:1739—1747.

37. Moorman AV, Schwab C, Ensor HM et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol 2017; 30:3100—3108.

38. Паровичникова Е. Н., Клясова Г. А., Исаев В. Г. и др. Первые итоги терапииPh-негативных острых лимфобластных лейкозов взрослых по протоколу Научно-исследовательской группы гематологических центров России ОЛЛ-2009. Тер архив2011; 83:7—11.

39. Паровичникова Е. Н., Троицкая В. В., Соколов А. Н. и др. Промежуточные результаты по лечению острыхPh-негативных лимфобластных лейкозов у взрослых больных(итоги Российской исследовательской группы по лечению острых лимфобластных лейкозов — RALL). Онкогематология2014; 3:6—15.

40. Bene MC, Nebe T, Bettelheim P et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: A consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 2011; 25:567—574.

41. Bene MC, Castoldi G, Knapp W et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9:1783—1786.

42. Borowitz MJ, Pullen DJ, Shuster JJ et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: Relation to other risk factors. A Children’s Oncology Group study. Leukemia 2003; 17:1566—1572.

43. Попов А. M., Вержбицкая Т. Ю., Фечина Л. Г. и др. Острые лейкозы: различия иммунофенотипа бластных клеток и их неопухолевых анало-гов в костном мозге. Клиническая онкогематология. Фундаментальные исследования и клиническая практика2016; 9:302—313.

44. Попов А. М., Белевцев М. В., Боякова Е. В. и др. Стандартизация определения минимальной остаточной болезни методом проточной цитометрии у детей с В-линейным острым лимфобластным лейкозом. Опыт работы российско-белорусской кооперативной группы. Онкогематология2016; 11:64—73.

45. Сидорова Ю. В., Сорокина Т. В., Бидерман Б. В. и др. Определение минимальной остаточной болезни у больныхB-клеточным хроническим лимфолейкозом методом пациент-специфической ПЦР. Клиническая лабораторная диагностика2011; 12:22—24.

46. Паровичникова Е. Н., Троицкая В. В., Соколов А. Н. и др. Острые В-лимфобластные лейкозы взрослых: выводы из Российского проспективного многоцентрового исследования ОЛЛ-2009. Тер архив2017; 89:10—17.

47. Martinelli G, Iacobucci I, Storlazzi CT et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: A GIMEMA AL WP report. J Clin Oncol 2009; 27:5202—5207.

48. Othman MAK, Melo JB, Carreira IM et al. High rates of submicroscopic aberrations in karyotypically normal acute lymphoblastic leukemia. Mol Cytogenetic 2015; 8:1—12.

49. Kavianpour M, Ketabchi N, Saki N. Prognostic significance of aberrant expression of CD markers in acute lymphoblastic leukemia. Magazine Eur Med Oncol 2017; 10:164—169.

50. Bhushan B, Chauhan PS, Saluja S et al. Aberrant phenotypes in childhood and adult acute leukemia and its association with adverse prognostic factors and clinical outcome. Clin Exp Med 2010; 10:33—40.

51. Suggs JL, Cruse JM, Lewis RE. Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol 2007; 83:471—473.

52. Suggs JL, Cruse JM, Lewis RE. Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol 2007; 83:471—473.

53. Iacobucci I, Storlazzi CT, Cilloni D et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients. Hematology 2009; 114:2159—2167.

54. Yu W, Nagaoka H, Jankovic M et al. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 1999; 400:682—687.

55. Цаур Г. А., Друй А. E., Солодовников А. Г. и др. Делеции гена IKZF1 — независимый прогностический фактор у детей с острым лимфобластным лейкозом изB-линейных предшественников. Онкогематология2016; 11:32—48.

56. Dhedin N, Huynh A, Maury S et al. Role of allo-SCT in adult Ph(-) ALL. Blood 2015; 125:2486—2497.


Review

For citations:


Baskhaeva G.A., Parovichnikova E.N., Biderman B.V., Gavrilina O.A., Davidova Yu.O., Drokov M.Yu., Zarubina K.I., Lukyanova I.A., Troitskaya V.V., Sokolov A.N., Piskunova I.S., Stepanova E.A., Smirnova S.A., Sudarikov A.B., Galtseva I.V., Obukhova T.N., Savchenko V.G. THE ROLE OF IKZF1 DELETIONS IN ADULT PH-NEGATIVE AND PH-POSITIVE B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA PATIENTS TREATED IN RUSSIAN ACUTE LYMPHOBLASTIC LEUKEMIA STUDY. Russian journal of hematology and transfusiology. 2018;63(1):16-30. (In Russ.) https://doi.org/10.25837/HAT.2018.80..1..002

Views: 670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)