Preview

Russian journal of hematology and transfusiology

Advanced search

EFFECTS OF TRANEXAMIC ACID, FACTOR XIII, AND FIBRINOGEN ON CLOT FORMATION AND LYSIS IN THE MODEL OF HYPERFIBRINOLYSIS INDUCED BY TISSUE- VS UROKINASE-TYPE PLASMINOGEN ACTIVATOR

https://doi.org/10.25837/HAT.2018.86..1..005

Abstract

Aim of the study. To compare the effects of tranexamic acid (TXA), factor XIII concentrate (FXIII) and fibrinogen concentrate on clot formation and fibrinolytic resistance in the in vitro model of hyperfibrinolysis induced by tissue- (tPA) vs urokinase-type (uPA) plasminogen activators.
Materials and methods. Citrated whole blood from 28 adult healthy volunteers was supplemented with 10 μg/ mL TXA, 2 IU/mL FXIII, or 3 mg/mL fibrinogen concentrate. Hyperfibrinolysis was induced by spiking the blood with tPA or uPA at their half-maximal effective concentrations (90 and 33 IU/mL, respectively). Clotting was induced by recalcification and addition of tissue factor and monitored using rotation thromboelastometry.
Results. The use of TXA increased maximal clot firmness in the presence of tPA and markedly inhibited clot lysis in the presence of any of the plasminogen activators. Supplementation of blood with FXIII significantly increased clot firmness and improved fibrinolytic resistance in the presence of either tPA or uPA. Supplementation with fibrinogen concentrate elicited a strikingly different effect on clot formation and lysis depending on the type of plasminogen activator. In the presence of tPA, fibrinogen concentrate significantly increased clot firmness and attenuated clot lysis. In contrast, in the presence of uPA, the use of fibrinogen markedly reduced clot firmness and promoted clot lysis. Similar effects of fibrinogen concentrate were observed in platelet-rich and microparticles-free plasma.
Conclusion. In hyperfibrinolysis, effect of the hemostatic drugs significantly depends on the type of plasminogen activator used. Therefore, mechanisms of hyperfibrinolysis should be taken into consideration while administering hemostatic drugs.

About the Authors

I. A. Budnik
Sechenov First Moscow State Medical University, Moscow
Russian Federation

Budnik Ivan, MD, PhD, Associate Professor, Department of Pathophysiology, Sechenov First Moscow State Medical
University, Moscow, 119048

Scopus Author ID: 24167930800. ResearcherID: C-3254-2014



O. L. Morozova
Sechenov First Moscow State Medical University, Moscow
Russian Federation
Scopus Author ID: 55805379800. ResearcherID: R-9125-2017


A. A. Tsymbal
Sechenov First Moscow State Medical University, Moscow
Russian Federation


B. Shenkman
Sheba Medical Center, Tel-Hashomer
Israel
Scopus Author ID: 7005545029


Yu. Einav
Holon Institute of Technology, Holon
Israel
Scopus Author ID: 6602990973


References

1. Kolev K, Longstaff C. Bleeding related to disturbed fibrinolysis. Br J Haematol 2016; 175:12—23.

2. Davenport RA, Guerreiro M, Frith D et al. Activated protein C drives the hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology 2017; 126:115—127.

3. Kojima T, Gando S, Morimoto Y et al. Systematic elucidation of effects of tranexamic acid on fibrinolysis and bleeding during and after cardiopulmonary bypass surgery. Thromb Res 2001; 104:301—307.

4. Saner FH, Gieseler RK, Akız H et al. Delicate balance of bleeding and thrombosis in end-stage liver disease and liver transplantation. Digestion 2013; 88:135—144.

5. Huang D, Yang Y, Sun J et al. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARαfusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia. Front Med 2017; 11:410—422.

6. Uchiba M, Imamura T, Hata H et al. Excessive fibrinolysis in AL-amyloidosis is induced by urokinae-type plasminogen activator from bone marrow plasma cells. Amyloid 2009; 16:89—93.

7. Prokopchuk-Gauk O, Brose K. Tranexamic acid to treat life-threatening hemorrhage in prostate cancer associated disseminated intravascular coagulation with excessive fibrinolysis. Cureus 2015; 7:e428.

8. Pawlak K, Buraczewska-Buczko A, Pawlak D et al. Hyperfibrinolysis, uPA/suPAR system, kynurenines, and the prevalence of cardiovascular disease in patients with chronic renal failure on conservative treatment. Am J Med Sci 2010; 339:5—9.

9. Weitz JI, Leslie B. Urokinase has direct catalytic activity against fibrinogen and renders it less clottable by thrombin. J Clin Invest 1990; 86:203—212.

10. Биткова Е. Е., Тимербаев В. Х., Хватов В. Б. и др. Влияние отечественных препаратов — ингибиторов фибринолиза на агрегантное состояние крови и объем операционной кровопотери у кардиохирургических больных. Анестезиология и реаниматология2014; 2:59—64.

11. Буланов А. Ю., Прасолов Н. В. Средства фармацевтического гемостаза в современной клинической практике. Тольяттинский медицинский консилиум2013; 3—4:25—29.

12. Shenkman B, Livnat T, Budnik I et al. Plasma tissue-type plasminogen activator increases fibrinolytic activity of exogenous urokinase-type plasminogen activator. Blood Coagul Fibrinolysis 2012; 23:729—733.

13. Gall L, Brohi K, Davenport R. Diagnosis and treatment of hyperfibrinolysis in trauma (a European perspective). Semin Thromb Hemost 2017; 43:224—234.

14. Буланов А. Ю. Роль тромбоэластографии в трансфузионной терапии посттравматической коагулопатии. Трансфузиология2011; 12:47—55.

15. Ройтман Е. В. «Проблема гемостаза» в лабораторной диагностике. Поликлиника2016; 1—3:29—36.

16. Жибурт Е. Б. Менеджмент крови пациента при критическом кровотечении. Эффективная фармакотерапия2014; 6:20—27.

17. Чарная М. А., Дементьева И. И. Аминокапроновая или транексамовая кислоты в кардиохирургии: что? где? когда? Обзор литературы. Часть 1. Кардиология и сердечно-сосудистая хирургия2016; 9:72—77.

18. Roberts I, Edwards P, Prieto D et al. Tranexamic acid in bleeding trauma patients: an exploration of benefits and harms. Trials 2017; 18:48.

19. Varju I, Tenekedjiev K, Keresztes Z et al. Fractal kinetic behavior of plasmin on the surface of fibrin meshwork. Biochemistry 2014; 53:6348—6356.

20. Krishnamurti C, Vukelja SJ, Alving BM. Inhibitory effects of lysine analogues on t-PA induced whole blood clot lysis. Thromb Res 1994; 73:419—430.

21. Silva MMCG, Thelwell C, Williams SC et al. Regulation of fibrinolysis by C-terminal lysines operates through plasminogen and plasmin but not tissue-type plasminogen activator. J Thromb Haemost 2012; 10:2354—2360.

22. Stewart RJ, Fredenburgh JC, Weitz JI. Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of D-dimer noncovalently linked to fragment E. JBC 1998; 273:18292—18299.

23. Takada A, Makino Y, Takada Y. Effects of tranexamic acid on fibrinolysis, fibrinogenolysis and amidolysis. Thromb Res 1986; 42:39—47.

24. Takada A, Sugawara Y, Takada Y. Enhancement of the activation of Glu-plasminogen by urokinase in the simultaneous presence of tranexamic acid or fibrin. Haemostasis 1989; 19:26—31.

25. Stief TW. In vitro simulation of thrombolysis inhibition. Clin Appl Thromb Hemost 2008; 14:234—237.

26. Hijazi N, Abu Fanne R, Abramovitch R et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 2015; 125:2558—2567.

27. Cushing MM, Fitzgerald MM, Harris RM et al. Influence of cryoprecipitate, factor XIII, and fibrinogen concentrate on hyperfibrinolysis. Transfusion 2017; 57:2502—2510.

28. Aisina RB, Mukhametova LI. Structure and function of plasminogen/ plasmin system. Russ J Bioorg Chem 2014; 40:590—605.

29. Hethershaw EL, Cilia La Corte AL, Duval C et al. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost 2014; 12:197—205.

30. Rijken DC, Uitte de Willige S. Inhibition of fibrinolysis by coagulation factor XIII. Biomed Res Int 2017; 2017:1209676.

31. Solomon C, Korte W, Fries D et al. Safety of factor XIII concentrate: analysis of more than 20 years of pharmacovigilance data. Transfus Med Hemother 2016; 43:365—373.

32. Gladner JA, Nossal R. Effects of crosslinking on the rigidity and proteolytic susceptibility of human fibrin clots. Thromb Res 1983; 30:273— 288.

33. Francis CW, Marder VJ. Increased resistance to plasmic degradation of fibrin with highly crosslinked alpha-polymer chains formed at high factor XIII concentrations. Blood 1988; 71:1361—1365.

34. Жибурт Е. Б. Менеджмент крови пациента при критическом кровотечении и массивной трансфузии. Вестник Национального медико-хирургического центра им. Н. И. Пирогова2013; 8:71—77.

35. Галстян Г. М., Берковский А. Л., Журавлев В. В. и др. Нужны ли в России препараты фибриногена? Анестезиология и реаниматология 2014; 3:49—59.

36. Ryan EA, Mockros LF, Weisel JW et al. Structural origins of fibrin clot rheology. Biophys J 1999; 77:2813—2826.

37. Lijnen HR, Van Hoef B, Collen D. Influence of cyanogen-bromide-digested fibrinogen on the kinetics of plasminogen activation by urokinase. Eur J Biochem 1984; 144:541—544.


Review

For citations:


Budnik I.A., Morozova O.L., Tsymbal A.A., Shenkman B., Einav Yu. EFFECTS OF TRANEXAMIC ACID, FACTOR XIII, AND FIBRINOGEN ON CLOT FORMATION AND LYSIS IN THE MODEL OF HYPERFIBRINOLYSIS INDUCED BY TISSUE- VS UROKINASE-TYPE PLASMINOGEN ACTIVATOR. Russian journal of hematology and transfusiology. 2018;63(1):55-64. (In Russ.) https://doi.org/10.25837/HAT.2018.86..1..005

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)