Preview

Russian journal of hematology and transfusiology

Advanced search

MOLECULAR GENETIC STRUCTURE OF MULTIPLE MYELOMA TUMOUR CELLS PRIOR TO TREATMENT AND AT THE TIME OF RELAPSE: SHORT REVIEW AND CASE REPORT

https://doi.org/10.35754/0234-5730-2019-64-3-362-374

Abstract

Introduction. Multiple myeloma (MM) is a lymphoproliferative disorder, for which the duration of remission is hard to predict.

Aim. To analyse the molecular genetic status of the tumour of MM patient with a short remission period at the onset and relapse of the disease, as well as to conduct its comparison with the clinical course of the disease.

Materials and methods. Somatic mutations were detected through Sanger sequencing. The level of gene expression was analysed using RNA sequencing on the Illumina platform. In order to study chromosomal rearrangements, the authors performed fluorescence hybridisation in situ (FISH study).

Results. Prior to the treatment and during the relapse of the disease, the patient revealed a heterozygous clonal mutation p.182A>C (p.Q61P) in the N-RAS gene, which is known to hamper regulation of the MAPK signalling pathway. The transcriptome analysis performed using the RNA-seq method revealed a sharp increase in the expression of the IL6 gene during relapse (by 30 times), which could have served as a trigger for the progression of multiple myeloma, given that this cytokine stimulates cell proliferation by activating various signalling pathways (MAPK, JAK- STAT, PI3K). The progression of the disease was also accompanied by an increased expression of key regulatory genes (с-MYC, Notch2, MDM, RAF1, STAT4, mTOR) and a sharp decrease in the expression of immunoglobulin genes, which caused deep immunodeficiency in the patient. A molecular cytogenetic study (FISH) revealed trisomy of chromosomes 5, 9 and 15 at the onset of the disease. Disease relapse occurred with the amplification of the 1q21 locus, with hyperdiploidy being preserved.

Conclusion. In order to predict the duration of the remission period, a complex molecular genetic screening is required. 

About the Authors

A. M. Sergeeva
National Research Center for Hematology
Russian Federation

Researcher, Laboratory of Genetic Engineering,

125167, Moscow



T. V. Abramova
National Research Center for Hematology
Russian Federation

Cand. Sci. (Med.), Pathologist, Laboratory of Karyology,

125167, Moscow



V. L. Surin
National Research Center for Hematology
Russian Federation

Senior Researcher, Laboratory of Genetic Engineering,

125167, Moscow



T. N. Obukhova
National Research Center for Hematology
Russian Federation

Senior Researcher, Laboratory of Genetic Engineering,

125167, Moscow



M. V. Dovydenko
National Research Center for Hematology
Russian Federation

Cand. Sci. (Med.), Hematologist, Department of Intensive High-dose Chemotherapy and Bone Marrow Transplantation,

125167, Moscow



M. V. Suntsova
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Junior Researcher, Laboratory for the Genomic Analysis of Cell Signaling Systems,

117198, Moscow;

117997, Moscow



A. A. Buzdin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dr. Sci. (Med.), Prof., Head of the Laboratory for Clinical and Genomic Bioinformatics,

117997, Moscow;

119991, Moscow



L. P. Mendeleeva
National Research Center for Hematology
Russian Federation

Dr. Sci. (Med.), Prof., Head of the Department of Highdose Chemotherapy for Paraproteinemic Hemoblastoses,

125167, Moscow



References

1. Prideaux S.M., Conway O’Brien E., Chevassut T.J. The genetic architecture of multiple myeloma. Adv. Hematol. 2014; 864058. DOI: 10.1155/2014/864058

2. Fonseca R., Barlogie B., Bataille R. et al. Genetics and cytogenetics of multiple myeloma: A workshop report. Cancer Res. 2004; 64: 1546–58.

3. Maura F., Degasperi A., Nadeu F. et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019; 10(1): 2969. DOI: 10.1038/s41467-019-11037-8

4. Bolli N., Biancon G., Moarii M. et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018; 32(12): 2604–16. DOI:10.1038/s41375-018-0037-9

5. Bolli N., Avet-Loiseau H., Wedge D.C. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014; 5: 2997. DOI: 10.1038/ncomms3997

6. Szalat R., Avet-Loiseau H., Munshi N.C. Gene Expression Profiles in Myeloma: Ready for the Real World? Clin Cancer Res. 2016; 22(22): 5434–42. DOI: 10.1158/1078-0432.CCR-16-0867

7. Chng W.J., Gonzalez-Paz N., Price-Troska T. et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008; 22: 2280–4. DOI: 10.1038/leu.2008.142

8. Pylayeva-Gupta Y., Grabocka E., Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011; 11: 761–74.

9. Rasmussen T., Kuehl M., Lodahl M. et al. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005; 105(1): 317–23.

10. Kim S.J., Shin H.T., Lee H.O. et al. Recurrent mutations of MAPK pathway genes in multiple myeloma but not in amyloid light-chain amyloidosis. Oncotarget. 2016; 7(42) :68350–9. DOI: 10.18632/oncotarget.12029

11. Rashid N.U., Sperling A.S., Bolli N. et al. Differential and limited expression of mutant alleles in multiple myeloma. Blood. 2014; 124: 3110–7.

12. Hu Y., Chen E., Wang J. Progress in the identification of gene mutations involved in multiple myeloma. Onco Targets Ther. 2019; 12: 4075–80. DOI: 10.2147/OTT.S205922

13. Andrulis M., Lehners N., Capper D. et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 2013; 3: 862–9. DOI: 10.1158/2159-8290.CD-13-0014

14. Levine A.J. p53, the Cellular Gatekeeper for Growth and Division. Cell. 1997. 88:323–331.

15. Salmon S.E., Dalton W.S., Grogan T.M. et al. Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood. 1991; 78: 44–50.

16. Brooks T.A., Hurley L.H. Targeting MYC Expression through G-Quadruplexes. Genes Cancer. 2010; 1(6): 641–9.

17. Dang C.V. MYC on the path to cancer. Cell. 2012; 149(1): 22–35. DOI: 10.1016/j.cell.2012.03.003

18. Gao P., Tchernyshyov I., Chang T.C. et al. c-myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009; 458(7239): 762–5. DOI: 10.1038/nature07823

19. Kuzyk A., Mai S. c-MYC-induced genomic instability. Cold Spring Harb Perspect Med. 2014; 4(4): a014373. DOI: 10.1101/cshperspect.a014373

20. Karlsson A., Giuriato S., Tang F. et al. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood. 2003; 101(7): 2797–803.

21. Mirabella F., Wu P., Wardell C.P. et al. MMSET is the key molecular target in t(4;14) myeloma. Blood Cancer J. 2013; 3(5): e114. DOI: 10.1038/bcj.2013.9

22. Chesi M., Bergsagel P.L. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol. 2013; 97(3): 313–3. DOI: 10.1007/s12185-013-1291-2

23. Zhan F., Colla S., Wu X. et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1- dependent and –independent mechanisms. Blood. 2007; 109(11): 4995–5001.

24. Smol T., Dufour A., Tricot S. et al. Combination of t(4;14), del(17p13), del(1p32) and 1q21 gain FISH probes identifies clonal heterogeneity and enhances the detection of adverse cytogenetic profiles in 233 newly diagnosed multiple myeloma. Mol Cytogenet. 2017; 10: 26. DOI: 10.1186/s13039-017-0327-3

25. Lobry C., Oh P., Mansour M.R. et al. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014; 123(16): 2451–9. DOI: 10.1182/ blood-2013-08-355818

26. Colombo M., Mirandola L., Platonova N. et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia. 2013; 27(5): 1009–18. DOI: 10.1038/leu.2013.6

27. Colombo M., Galletti S., Bulfamante G. et al. Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6expression in bone marrow niche. Oncotarget. 2016; 7(35): 56013–29. DOI: 10.18632/oncotarget.10820

28. Kishimoto T. The biology of interleukin-6. Blood. 1989; 74: 1–10.

29. Frassanito M.A., Cusmai A., Iodice G., Dammacco F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood. 2001; 97(2): 483–9.

30. Gadó K., Domján G., Hegyesi H., Falus A. Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell Biol Int. 2000; 24(4):195–209.

31. Herrero A.B., Rojas E.A., Misiewicz-Krzeminska I. et al. Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci. 2016; 17(12): 2003. DOI: 10.3390/ijms17122003

32. Simons A., Shaffer L.G., Hastings R.J. Cytogenetic Nomenclature: Changes in the ISCN 2013 Compared to the 2009 Edition. Cytogenet. Genome Res 2013; 141: 1–6. DOI: 10.1159/000353118

33. Dobin A., Davis C.A., Schlesinger F. et al. STAR: ultrafast universal RNA-seqaligner. Bioinformatics. 2013; 29(1): 15–21. DOI: 10.1093/bioinformatics/bts635

34. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.

35. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014; 15(12): 538–48. DOI: 10.1016/S1470-2045(14)70442-5

36. Kodal J., Vedel-Krogh S., Kobylecki C. et al. TP53 Arg72Pro, mortality after cancer, and all-cause mortality in 105,200 individuals. Sci Rep. 2017; 7: 336. DOI: 10.1038/s41598-017-00427-x

37. Smadja N.V., Bastard C., Brigaudeau C. et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001; 98(7): 2229–38.

38. Chen M.H., Qi C., Reece D., Chang H. Cyclin kinase subunit 1B nuclear expression predicts an adverse outcome for patients with relapsed/refractory multiple myeloma treated with bortezomib. Hum Pathol. 2012; 43(6): 858–64. DOI: 10.1016/j.humpath.2011.07.013

39. Stella F.,Pedrazzini E., Baialardo E. et al. Quantitative analysis of CKS1B mRNA expression and copy number gain in patients with plasma cell disorders. Blood Cells Mol Dis. 2014; 53(3): 110–7. DOI: 10.1016/j.bcmd.2014.05.006

40. Chauhan D., Uchiyama H., Akbarali Y. et al. Multiple myeloma cell adhesioninduced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996; 87(3): 1104–12.


Review

For citations:


Sergeeva A.M., Abramova T.V., Surin V.L., Obukhova T.N., Dovydenko M.V., Suntsova M.V., Buzdin A.A., Mendeleeva L.P. MOLECULAR GENETIC STRUCTURE OF MULTIPLE MYELOMA TUMOUR CELLS PRIOR TO TREATMENT AND AT THE TIME OF RELAPSE: SHORT REVIEW AND CASE REPORT. Russian journal of hematology and transfusiology. 2019;64(3):362-374. (In Russ.) https://doi.org/10.35754/0234-5730-2019-64-3-362-374

Views: 2630


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)