Preview

Russian journal of hematology and transfusiology

Advanced search

Alterations of the bone marrow stromal microenvironment in adult patients with acute leukemia before and after treatment

https://doi.org/10.18821/0234-5730-2016-61-3-122-126

Abstract

Aim of the study. To investigate two types of the bone marrow (BM) stromal precursor cells, mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs), in patients with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) before and after chemotherapy.

Material and methods. BM derived MMSCs and CFU-Fs withdrawn from 74 AML, ALL and CML patients before and after chemotherapy were studied.

Results. Concentration and culture characteristics of both types of precursors were shown to be altered in patients with acute leukemia and CML.

About the Authors

V. G. Savchenko
National Research Center for Hematology
Russian Federation
Moscow, 125167


I. N. Shipunova
National Research Center for Hematology
Russian Federation
Moscow, 125167


A. E. Bigildeev
National Research Center for Hematology
Russian Federation
Moscow, 125167


N. I. Drize
National Research Center for Hematology
Russian Federation
Moscow, 125167


A. G. Turkina
National Research Center for Hematology
Russian Federation
Moscow, 125167


L. A. Kuzmina
National Research Center for Hematology
Russian Federation
Moscow, 125167


T. V. Sorokina
National Research Center for Hematology
Russian Federation

Sorokina Tamara V., MD, Doctor of the Department of HighDose Chemotherapy, Depressions of Hemopoiesis, and Bone Marrow Transplantation

Moscow, 125167



E. N. Parovichnikova
National Research Center for Hematology
Russian Federation
Moscow, 125167


References

1. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003; 425(6960): 841–6.

2. Nilsson S.K., Johnston H.M., Coverdale J.A. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001; 97(8): 2293–9.

3. Morrison S.J., Spradling A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008; 132(4): 598–611.

4. Lane S.W., Scadden D.T., Gilliland D.G. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood. 2009; 114(6): 1150–7.

5. Sacchetti B., Funari A., Michienzi S., Di Cesare S., Piersanti S., Saggio I., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131(2): 324–36.

6. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3(4): 393–403.

7. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411): 143–7.

8. Frenette P.S., Pinho S., Lucas D., Scheiermann C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 2013; 31: 285–316. doi: 10.1146/annurev-immunol-032712-095919.

9. Méndez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., MacArthur B.D., Lira S.A., et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466(7308): 829–34.

10. Friedenstein A.J. Precursor cells of mechanocytes. Int. Rev. Cytol. 1976; 47: 327–59.

11. Castro-Malaspina H., Gay R.E., Resnick G., Kapoor N., Meyers P., Chiarieri D., et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. 1980; 56(2): 289–301.

12. Konopleva M.Y., Jordan C.T. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J. Clin. Oncol. 2011; 29(5): 591–9.

13. Boyerinas B., Zafrir M., Yesilkanal A.E., Price T.T., Hyjek E.M., Sipkins D.A. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood. 2013; 121(24): 4821–31.

14. Ben-Batalla I., Schultze A., Wroblewski M., Erdmann R., Heuser M., Waizenegger J.S., et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood. 2013; 122(14): 2443–52.

15. Battula V.L., Chen Y., Cabreira Mda G., Ruvolo V., Wang Z., Ma W., et al. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood. 2013;122(3): 357–66. doi: 10.1182/blood-2012-06-437988.

16. Ito S., Barrett A.J., Dutra A., Pak E., Miner S., Keyvanfar K., et al. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells. Stem Cell Res.2015; 14(1): 95–104. doi: 10.1016/j.scr.2014.11.007.

17. Chandran P., Le Y., Li Y., Sabloff M., Mehic J., Rosu-Myles M., Allan D.S. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leuk. Res. 2015; 39(4): 486–93. doi: 10.1016/j.leukres.2015.01.013.

18. Geyh S., Rodriguez-Paredes M., Jager P., Khandanpour C., Cadeddu R.P., Gutekunst J., et al. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia. 2016; 30(3): 683–91. doi: 10.1038/leu.2015.325.

19. Prata Kde L., Orellana M.D., De Santis G.C., Kashima S., Fontes A.M., Carrara Rde C., et al. Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Exp. Hematol. 2010; 38(4): 292–300.e4. doi: 10.1016/j.exphem.2010.01.006.

20. Nifontova I., Svinareva D., Petrova T., Drize N. Sensitivity of mesenchymal stem cells and their progeny to medicines used for the treatment of hematoproliferative diseases. Acta Haematol. 2008; 119(2): 98–103.

21. Kurtova A.V., Balakrishnan K., Chen R., Ding W., Schnabl S., Quiroga M.P., et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood. 2009; 114(20): 4441–50.

22. Nagao T., Hugo C.M. Characteristics and functions of fibroblast colony forming cells in human bone marrow. Rinsho Ketsueki. Japanese J. Clin. Hematol. 1983; 24(11): 1455–63.

23. Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., et al. The 2016 revision to the WHO classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20): 2391–405. doi: 10.1182/blood-2016-03-643544.


Review

For citations:


Savchenko V.G., Shipunova I.N., Bigildeev A.E., Drize N.I., Turkina A.G., Kuzmina L.A., Sorokina T.V., Parovichnikova E.N. Alterations of the bone marrow stromal microenvironment in adult patients with acute leukemia before and after treatment. Russian journal of hematology and transfusiology. 2016;61(3):122-126. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-3-122-126

Views: 486


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)