Next-generation sequencing-based molecular genetic profiling in adults with acute myeloid leukaemia
https://doi.org/10.35754/0234-5730-2020-65-4-444-459
Abstract
Introduction. Acute myeloid leukaemia (AML) is associated with multiple driver mutations, which prognostic value remains understudied.
Aim. Assessment of the frequency of mutations in various genes and their impact on acute myeloid leukaemia outcome in adults.
Materials and methods. The study included 90 adult patients with newly diagnosed AML; 76 were aged under 60, 14 were 60 and more years old. Patients under 60 had chemotherapy (CT) “7+3” as induction, the elder cohort had variant low-dose CT with hypomethylating agents. The molecular genetic status of patients was determined using next-generation sequencing; the in-house gene panel included ASXL1, BCOR, DNMT3, FLT3, IDH1, IDH2, PIGA, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53 and U2AF2.
Results. Nucleotide substitutions were identified in genes DNMT3, TET2, TP53, SETBP1, BCOR, RUNX1, IDH2, IDH1, FLT3, U2AF2, SF3B1 in 57.8 % of the patients (n = 52), with 17.8 % (n = 16) having compound mutations in two or three genes. Treatment efficacy and long-term outcomes were assessed against age, ELN-2017 risk groups and mutations in genes TP53, RUNX1, IDH1, IDH2 and DNMT3. In the long term, a reliable variation was revealed in the overall survival (OS) rate with respect to mutations in genes TP53 and RUNX1. Patients with mutant TP53 had 30 % OS, those with the intact gene — 53.4 % (p = 0.0037). Similar results were obtained with RUNX1: mutations marked 20 % OS, intact patients had 54% OS (p = 0.0466).
Conclusion. Mutations in genes FLT3-ITD, NPM1 and CEBPA are proxy to AML. However, a more accurate prognosis and optimal choice of therapy require detailed molecular profiling due to genetic heterogeneity of AML patients.
About the Authors
A. I. KashlakovaRussian Federation
Anastasia I. Kashlakova, Clinical Resident, Department of Intensive HighDose Chemotherapy for Hemoblastoses and Hematopoietic Depressions
125167, Moscow
tel.: +7 (495) 612-45-92
E. N. Parovichnikova
Russian Federation
Elena N. Parovichnikova, Dr. Sci. (Med.), Head of the Department of Chemotherapy for Hemoblastoses, Hematopoietic Depressions and BMT
125167, Moscow
B. V. Biderman
Russian Federation
Bella V. Biderman, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology
125167, Moscow
Y. V. Sidorova
Russian Federation
Yulia V. Sidorova, Cand. Sci. (Med.), Senior Researcher, Laboratory of Molecular Hematology
125167, Moscow
Y. A. Chabaeva
Russian Federation
Yulia A. Chabaeva, Cand. Sci. (Tech.), Deputy Head of the Information and Analysis Department
125167, Moscow
V. V. Troitskaya
Russian Federation
Vera V. Troitskaya, Cand. Sci. (Med.), Deputy Director for Therapy, Head of the Department of Intensive High-Dose Chemotherapy for Hemoblastoses and Hematopoietic Depressions, Deputy Director for Medical Affairs
125167, Moscow
I. A. Lukianova
Russian Federation
Irina A. Lukianova, Cand. Sci. (Med.), Physician, Department of Intensive HighDose Chemotherapy for Hemoblastoses and Hematopoietic Depressions
125167, Moscow
A. V. Kokhno
Russian Federation
Alina V. Kokhno, Cand. Sci. (Med.), Leading Researcher, Department of Intensive High-Dose Chemotherapy for Hemoblastoses and Hematopoietic Depressions
125167, Moscow
A. N. Sokolov
Russian Federation
Andrey N. Sokolov, Cand. Sci. (Med.), Senior Researcher, Department of Intensive High-Dose Chemotherapy for Hemoblastoses and Hematopoietic Depressions
125167, Moscow
A. B. Sudarikov
Russian Federation
Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Hematology
125167, Moscow
T. N. Obukhova
Russian Federation
Tatyana N. Obukhova, Cand. Sci. (Med.), Head of the Laboratory of Karyology
125167, Moscow
V. G. Savchenko
Russian Federation
Valery G. Savchenko, Dr. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, Director, National Research Center for Hematology; Chief Non-staff Hematologist, Ministry of Health of the Russian Federation
125167, Moscow
References
1. Grimwade D., Hills R.K., Moorman A.V. et al. Refinement of cytogenetic classification in AML Younger adult patients treated in UKMRC. Blood. 2010; 116(3): 354–66. DOI: 10.1182/blood-2009-11-254441.
2. Grimwade D., Walker H., Oliver F. et al. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998; 92(7): 2322–33. DOI: 10.1182/blood.v92.7.2322.
3. Grimwade D., Walker H., Harrison G. et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): Analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001; 98(5): 1312–20. DOI: 10.1182/blood.V98.5.1312.
4. Schoch C., Haferlach T., Haase D. et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: A study of 90 patients. Br J Haematol. 2001; 112(1): 118–26. DOI: 10.1046/j.1365-2141.2001.02511.x.
5. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017; 129: 424–47. DOI: 10.1182/blood-2016-08-733196.
6. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20): 2391–405. DOI: 10.1182/blood-2016-03-643544.
7. Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22): 2059–74. DOI: 10.1056/NEJMoa1301689.
8. Röllig C., Bornhäuser M., Thiede C. et al. Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: Evaluation of the proposed reporting system. J Clin Oncol. 2011; 29(20): 2758–65. DOI: 10.1200/JCO.2010.32.8500.
9. Preudhomme C., Sagot C., Boissel N. et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: A study from the Acute Leukemia French Association (ALFA). Blood. 2002; 100(8): 2717–23. DOI: 10.1182/blood-2002-03-0990.
10. Fröhling S., Schlenk R.F., Stolze I. et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: Prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004; 22(4): 624–33. DOI: 10.1200/JCO.2004.06.060.
11. Tang J.L., Hou H.A., Chen C.Y. et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood. 2009; 114(26): 5352–61. DOI: 10.1182/blood-2009-05-223784.
12. Gaidzik V.I., Bullinger L., Schlenk R.F. et al. RUNX1 mutations in acute myeloid leukemia: Results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol. 2011; 29(10): 1364–72. DOI: 10.1200/JCO.2010.30.7926.
13. Mendler J.H., Maharry K., Radmacher M.D. et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol. 2012; 30(25): 3109–18. DOI: 10.1200/JCO.2011.40.6652.
14. Gaidzik V.I., Teleanu V., Papaemmanuil E. et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016; 30: 2160–8. DOI: 10.1038/leu.2016.126.
15. Haferlach T., Stengel A., Eckstein S. et al. The new provisional WHO entity “RUNX1 mutated AML” shows specific genetics but no prognostic influence of dysplasia. Leukemia. 2016; 30(10): 2109–12. DOI: 10.1038/leu.2016.150.
16. Wouters B.J., Löwenberg B., Erpelinck-Verschueren C.A.J. et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009; 113(13): 3088–91. DOI: 10.1182/blood-2008-09-179895.
17. Metzeler K.H., Becker H., Maharry K. et al. ASXL1 mutations identify a highrisk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011; 118(26): 6920–9. DOI: 10.1182/blood-2011-08-368225.
18. Pratcorona M., Abbas S., Sanders M.A. et al. Acquired mutations in ASXL1 in acute myeloid leukemia: Prevalence and prognostic value. Haematologica. 2012; 97(3): 388–92. DOI: 10.3324/haematol.2011.051532.
19. Schnittger S., Eder C., Jeromin S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013; 27(1): 82–91. DOI: 10.1038/leu.2012.262.
20. Paschka P., Schlenk R.F., Gaidzik V.I. et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: A study by the German-Austrian acute myeloid leukemia study group. Haematologica. 2015; 100(3): 324–30. DOI: 10.3324/haematol.2014.114157.
21. Haferlach C., Dicker F., Herholz H. et al. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008; 22(8): 1539–41. DOI: 10.1038/leu.2008.143.
22. Bowen D., Groves M.J., Burnett A.K. et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009; 23(1): 203–6. DOI: 10.1038/leu.2008.173.
23. Rücker F.G., Schlenk R.F., Bullinger L. et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012; 119(9): 2114–21. DOI: 10.1182/blood-2011-08-375758.
24. Devillier R., Mansat-De Mas V., Gelsi-Boyer V. et al. Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasiarelated changes. Oncotarget. 2015; 6(10): 8388–96. DOI: 10.18632/oncotarget.3460.
25. Tsai C.H., Hou H.A., Tang J.L. et al. Genetic alterations and their clinical implications in older patients with acute myeloid leukemia. Leukemia. 2016; 30(7): 1485–92. DOI: 10.1038/leu.2016.65.
26. Kottaridis P.D., Gale R.E., Frew M.E. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United King. Blood. 2001; 98(6): 1752–9. DOI: 10.1182/blood.V98.6.1752.
27. Thiede C., Steudel C., Mohr B. et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002; 99(12): 4326–35. DOI: 10.1182/blood.V99.12.4326.
28. Schlenk R.F., Breitruck J., Benner A. et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002; 100(13): 4372–80. DOI: 10.1182/blood-2002-05-1440.
29. Gale R.E., Green C., Allen C. et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008; 111(5): 2776–84. DOI: 10.1182/blood-2007-08-109090.
30. Pratcorona M., Brunet S., Nomdedéu J. et al. Favorable outcome of patients with AML harboring a low-allelic burden FLT3-ITD and concomitant NPM1 mutation: relevance to post-remission. Blood. 2013; 121(14): 2734–8. DOI: 10.1182/blood-2012-06-431122.
31. Schlenk R.F., Kayser S., Bullinger L. et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014; 124(23): 3441–9. DOI: 10.1182/blood-2014-05-578070.
32. Linch D.C., Hills R.K., Burnett A.K. et al. Impact of FLT3ITD mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014; 124(2): 273–6. DOI: 10.1182/blood-2014-02-554667.
33. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016; 374(23): 2209–21. DOI: 10.1056/NEJMoa1516192.
34. Metzeler K.H., Herold T., Rothenberg-Thurley M. et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016; 128(5): 686–98. DOI: 10.1182/blood-2016-01-693879.
35. Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16): 1–7. DOI: 10.1093/nar/gkq603.
36. Tate J.G., Bamford S., Jubb H.C. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2018; 47(D1): D941–7. DOI: 10.1093/nar/gky1015.
37. Scholl S., Mügge L.-O., Landt O. et al. Rapid screening and sensitive detection of NPM1 (nucleophosmin) exon 12 mutations in acute myeloid leukaemia. Leuk Res. 2007; 31(9): 1205–11. DOI: 10.1016/j.leukres.2006.12.011.
38. Lin L.I., Lin T.C., Chou W.C. et al. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia. 2006; 20(10): 1899–903. DOI: 10.1038/sj.leu.2404331.
39. Brownstein M.J., Carpten J.D., Smith J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques. 1996; 20(6): 1004–10. DOI: 10.2144/96206st01.
40. Ley T.J., Ding L., Walter M.J. et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010; 363(25): 2424–33. DOI: 10.1056/NEJMoa1005143.
41. Di Nardo C.D., Cortes J.E. Mutations in AML: Prognostic and therapeutic implications. Hematology. 2016; 2016(1): 348–55. DOI: 10.1182/asheducation-2016.1.348.
42. Lindsley R.C., Mar B.G., Mazzola E. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015; 125(9): 1367–76. DOI: 10.1182/blood-2014-11-610543.
Review
For citations:
Kashlakova A.I., Parovichnikova E.N., Biderman B.V., Sidorova Y.V., Chabaeva Y.A., Troitskaya V.V., Lukianova I.A., Kokhno A.V., Sokolov A.N., Sudarikov A.B., Obukhova T.N., Savchenko V.G. Next-generation sequencing-based molecular genetic profiling in adults with acute myeloid leukaemia. Russian journal of hematology and transfusiology. 2020;65(4):444-459. (In Russ.) https://doi.org/10.35754/0234-5730-2020-65-4-444-459