Association of allelic variants of genes of detoxification system with clinical presentation of acute intermittent porphyria
https://doi.org/10.18821/0234-5730-2016-61-3-156-160
Abstract
Acute intermittent porphyria (AIP) is caused by the partial deficiency of porphobilinogen deaminase (PBGD), one of the enzymes of the heme biosynthetic pathway. The penetrance of the mutant gene PBGD is not high and averages of 10–15%. Any additional genetic factors, the combination of which with the mutant allele of the PBGD gene leads to the clinical manifestation of AIP is not currently known. The eventual associations of allelic variants of genes of the Phase 1: CYP1A1 (A2455G), CYP2E1 (G1259C) and four genes of the phase 2: NAT2 (C481T, G590A G857A), mEPHX1: Tyr113His – 3rd exon, His139Arg – 4th exon, GSTM1 (Del), GSTT1 (Del) with clinical presentation of AIP were investigated. Homozygous carriership of the “fast” allele of the acetyltransferase gene (genotype N/N) was established to be associated with a latent course of the disease. The combination of “functionally weakened” genotypes of glutathione transferase (class t~) and class M (GSTT10/0, GSTM10/0) can be considered as an unfavorable genetic factor related with the clinical presentation of AIP. Comparative analysis of the frequencies of genotypes and polymorphic alleles of genes CYP1A1, CYP2E1 and mEPHX1 revealed no statistically significant differences between the samples of patients with AIP and asymptomatic carriers of the disease.
About the Authors
Yu. A. LuchininaRussian Federation
Moscow, 125167
M. V. Goncharova
Russian Federation
Moscow, 125167
V. L. Surin
Russian Federation
Surin Vadim L., senior researcher of the Laboratory of Genetic Engineering
Moscow, 125167
T. E. Ivashchenko
Russian Federation
St-Petersburg, 199034
Ya. S. Pustovoyt
Russian Federation
Moscow, 125167
I. V. Karpova
Russian Federation
Moscow, 125167
S. K. Kravchenko
Russian Federation
Moscow, 125167
References
1. Hessels J., Voortman G., Van Der Wagen A., Van Der Elzen C., Scheffer H., Zuijderhoudt F.M.J. Homozygous acute intermittent porphyria in a7-year-old boy with massive excretions of porphyrins and porphyrin precursos. J. Inherit. Metab. Dis. 2004; 27(1): 19–27.
2. Badminton M.N., Elder G.H. Molecular mechanisms of dominant expression in porphyria J. Inherit. Metab. Dis. 2005; 28(3): 277–86.
3. Gouya L., Puy H., Lamoril J., Da Silva V., Grandchamp B., Nordmann Y., et al. Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood. 1999; 93(6): 2105–10.
4. Gouya L., Puy H., Robreau A.M., Lyoumi S., Lamoril J., Da Silva V., et al. Modulation of penetrance by the wild-type allele in dominantly inherited erythropoietic protoporphyria and acute hepatic porphyrias. Hum. Genet. 2004; 114(3): 256–62.
5. Brady J.L., Jackson H.A., Roberts A.G., Morgan R.R., Whatley S.D., Rowlands G.L., et al. Co-inheritance of mutations in the uroporphyrinogen decarboxylase and haemochromatosis genes accelerates the onset of porphyria cutanea tarda. J. Invest. Dermatol. 2000; 115(5): 868–74.
6. Gardlo K., Selimovic D., Bolsen K., Ruzichka T., Abel J., Fritsch C. Cytochrome P4501A1 polymorphisms in a Caucasian population with porphyria cutanea tarda. Exp. Dermatol. 2003; 12(6): 843–8.
7. Christiansen L., Bygum A., Jensen A., Thomsen K., Brandrup F., Horder M., et al. Association between CYP1A2 polymorphism and susceptibility to porphyria cutanea tarda. Hum. Genet. 2000; 107(6): 612–4.
8. Surin V.L., Luchinina Yu.A., Selivanova D.S., Pustovoyt Ya.S., Karpova I.V., Pivnik A.V., et al. Molecular genetic study of acute intermittent porphyria in Russia: mutation analysis and functional polymorphisms search in porphobilinogen deaminase gene. Genetics. Russian journal. 2010; 46(4): 540–52. (in Russian)
9. Nebert D.W. Polymorphisms in drug metabolising enzymes :what is their clinical relevance and why do they exist? A. J. Hum. Genet. 1997; 60(2): 265–71.
10. Nebert D.W., Carvan M.J. 3rd . Ecogenetics: from ecology to health. Toxicol. Ind. Health. 1997; 13(2–3): 163–92.
11. Badawi A.F., Cavalieri E.L., Rogan E.G. Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism. 2001; 50(9): 1001–3.
12. Kukes V.G. The metabolism of drugs: clinical and pharmacological aspects. Moscow: Reafarm; 2004. (in Russian)
13. Podymova S.D. The mechanisms of alcoholic liver damage. Russian Journal of Gastroenterology, Hepatology and Coloproctology (Rossiyskiy zhurnal gastroenterologii, gepatologii i koloproktologii). 1998; 5: 21–5. (in Russian)
14. Neafsey P., Ginsberg G., Hattis D., Johns D.O., Guyton K.Z., Sonawane B. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. J. Toxicol. Environ. Health B Crit. Rev. 2009; 12(5–6): 362–88. doi: 10.1080/10937400903158359.
15. Artamonov V.V., Lyubchenko L.N., Nemtsova M.V., Zaletaev D.V. The unfavorable environmental conditions and prospective diagnostics of high risk of cancer development by means of molecular systems (for example breast cancer). Bulletin of the Institute of molecular medicine. Russian journal(Vestnik NII molekulyarnoy meditsiny). 2004; 4: 37–54.
16. Bolt H.M., Thier R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab. 2006; 7(6): 613–28.
Review
For citations:
Luchinina Yu.A., Goncharova M.V., Surin V.L., Ivashchenko T.E., Pustovoyt Ya.S., Karpova I.V., Kravchenko S.K. Association of allelic variants of genes of detoxification system with clinical presentation of acute intermittent porphyria. Russian journal of hematology and transfusiology. 2016;61(3):156-160. (In Russ.) https://doi.org/10.18821/0234-5730-2016-61-3-156-160