Preview

Russian journal of hematology and transfusiology

Advanced search

The effect of cryopreservation on the parameters of mononuclear apoptosis during extracorporeal photopheresis

https://doi.org/10.35754/0234-5730-2021-66-3-386-394

Abstract

Introduction. The mechanism of action of extracorporeal photopheresis (ECP) is associated with the induction of apoptosis of lymphocytes, which cause the activation of antigen-presenting cells (APC). As a result of the use of ECF, the number of T-regulatory lymphocytes increases, which induces an immunosuppressive effect. The actual problem lies in the use of cryopreserved and photo-irradiated mononuclear cells.

Aim — to analyze the functional features of cryopreserved mononuclear cells after ECP.

Materials and methods. The study analyzed the indicators of early and late stages of apoptosis in the concentrate of mononuclear cells of different groups, depending on the time of collection and the type of exposure on these concentrates of mononuclear cells: immediately after apheresis (groups 1.1 and 1.2), and after ECP (groups 1.3, 2.1 and 2.2), groups 1.2 and 2.2 were after cryopreservation, and 1.3 — after cryopreservation, and then after ECP. 113 samples of mononuclear cell concentrates obtained from 12 patients with chronic graft-versus-host reaction (GVHD) were analyzed. All groups of samples were cultured to determine the dynamics of changes in indicators of early and late stages of apoptosis over time.

Results. The proportion of lymphocytes in the late stage of apoptosis after 2 days cultivation, after the standard ECP procedure, was comparable to the proportion of lymphocytes in the late stage of apoptosis during ECP followed by cryopreservation of the leukoconcentrate.

Conclusion. It is advisable to collect mononuclear cells, perform their extracorporeal photo-irradiation, and then divide the photo-irradiated mononuclear cells into several parts both for cryopreservation and for the return of non-cryopreserved photo-irradiated mononuclear cells to the patient.

About the Authors

V. A. Vasilyeva
National Research Center for Hematology
Russian Federation

 Vera A. Vasilyeva,* Cand. Sci. (Med.), Head of the Department of Immunochemotherapy for Patients after BMT 

 125167, Moscow 



L. A. Kuzmina
National Research Center for Hematology
Russian Federation

 Larisa A. Kuzmina, Cand. Sci. (Med.), Head of the Department of Intensive Chemotherapy and BMT 

 125167, Moscow 



N. A. Petinati
National Research Center for Hematology
Russian Federation

 Nataliya A. Petinati, Cand. Sci. (Med.), Senior Researcher, Laboratory
for Physiology of Hematopoiesis 

 125167, Moscow 



N. I. Drize
National Research Center for Hematology
Russian Federation

 Nina I. Drize, Dr. Sci. (Biol.), Head of the Laboratory for Physiology of Hematopoiesis 

 125167, Moscow 



D. V. Kamelskikh
National Research Center for Hematology
Russian Federation

 Denis V. Kamelskikh, Physician, Department of Blood Transfusion 

 125167, Moscow 



T. V. Gaponova
National Research Center for Hematology
Russian Federation

 Tatyana V. Gaponova, Cand. Sci. (Med.), First Deputy CEO 

 125167, Moscow 



K. A. Nikiforova
National Research Center for Hematology
Russian Federation

 Kseniia A. Nikiforova, Biologist, Laboratory of Immunophenotyping of Blood Cells and Bone Marrow 

 125167, Moscow 



Yu. O. Davidova
National Research Center for Hematology
Russian Federation

 Yulia O. Davydova, Cand. Sci. (Med.), Laboratory Doctor, Laboratory of Immunophenotyping of Blood Cells and Bone Marrow 

 125167, Moscow 



N. M. Kapranov
National Research Center for Hematology
Russian Federation

 Nikolay M. Kapranov, Cand. Sci. (Biol.), Medical Physicist, Laboratory of Immunophenotyping of Blood Cells and Bone Marrow 

 125167, Moscow 



I. V. Galtceva
National Research Center for Hematology
Russian Federation

 Irina V. Galtseva, Cand. Sci. (Med.), Head of the Laboratory of Immunophenotyping of Blood Cells and Bone Marrow 

 125167, Moscow 



E. N. Parovichnikova
National Research Center for Hematology
Russian Federation

 Elena N. Parovichnikova, Dr. Sci. (Med.), Head of the Department of Chemotherapy Hemoblastosis, Hematopoiesis Depression and BMT, acting CEO 

 125167, Moscow 



V. G. Savchenko
National Research Center for Hematology
Russian Federation

 Valery G. Savchenko , Dr. Sci. (Med.), Full Member of the Russian Academy of Sciences, Director 

 125167, Moscow 



References

1. Rook A.H., Freundlich B., Jegasothy B.V., et al. Treatment of systemic sclerosis with extracorporeal photochemotherapy. Results of a multicenter trial. Arch Dermatol. 1992; 128(3): 337–46.

2. Knobler R.M. Extracorporeal photochemotherapy for the treatment of lupus erythematosus: Preliminary observations. In: Systemic Lupus Erythematosus. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995: 193–5. DOI: 10.1007/978-3-642-79622-7_13.

3. Andreu G., Leon A., Heshmati F., et al. Extracorporeal photochemotherapy: Evaluation of two techniques and use in connective tissue disorders. Transfus Sci. 1994; 15(4): 443–54. DOI: 10.1016/0955-3886(94)90178-3.

4. Heshmati F., Tavakoli R., Michel A., et al. Extracorporeal photochemotherapy: A treatment for organ graft rejection. Ther Apher. 1997; 1(2): 121–5. DOI: 10.1111/j.1744-9987.1997.tb00025.x.

5. Rossetti F., Dall’Amico R., Crovetti G., et al. Extracorporeal photochemotherapy for the treatment of graft-versus-host disease. Bone Marrow Transplant. 1996; 18(2): 175–81.

6. Rook A.H., Jegasothy B.V., Heald P., et al. Extracorporeal photochemotherapy for drug-resistant pemphigus vulgaris. Ann Intern Med. 1990; 112(4): 303–5. DOI: 10.7326/0003-4819-112-4-303.

7. de Misa R.F., Azaña J.M., Harto A., et al. Extracorporeal photochemotherapy in the treatment of severe psoriatic arthropathy. Br J Dermatol. 1992; 127(4): 448. DOI: 10.1111/j.1365-2133.1992.tb00473.x.

8. Prinz B., Nachbar F., Plewig G. Treatment of severe atopic dermatitis with extracorporeal photopheresis. Arch Dermatol Res. 1994; 287(1): 48–52. DOI: 10.1007/BF00370718.

9. Reinisch W., Nahavandi H., Santella R., et al. Extracorporeal photochemotherapy in patients with steroid-dependent Crohn’s disease: A prospective pilot study. Aliment Pharmacol Ther. 2001; 15(9): 1313–22. DOI: 10.1046/j.1365-2036.2001.01054.x.

10. Bécherel P.A., Bussel A., Chosidow O., et al. Extracorporeal photochemotherapy for chronic erosive lichen planus. Lancet. 1998; 351(9105): 805. DOI: 10.1016/s0140-6736(05)78932-7.

11. Costanzo-Nordin M.R., Hubbell E.A., O’Sullivan E.J., et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation. 1992; 53(4): 808–15. DOI: 10.1097/00007890-199204000-00021.

12. Barr M.L., Meiser B.M., Eisen H.J., et al. Photopheresis for the prevention of rejection in cardiac transplantation. N Engl J Med. 1998; 339(24): 1744–51. DOI: 10.1056/NEJM199812103392404.

13. Andreu G., Achkar A., Couetil J.P., et al. Extracorporeal photochemotherapy treatment for acute lung rejection episode. J Hear Lung Transplant. 1995; 14(4): 793–6.

14. Malik M.I., Litzow M., Hogan W., et al. Extracorporeal photopheresis for chronic graft-versus-host disease: A systematic review and meta-analysis. Blood Res. 2014; 49(2): 100–6. DOI: 10.5045/br.2014.49.2.100.

15. Greinix H.T., Volc-Platzer B., Rabitsch W., et al. Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versushost disease. Blood. 1998; 92(9): 3098–104.

16. Knobler R., Berlin G., Calzavara-Pinton P., et al. Guidelines on the use of extracorporeal photopheresis. J Eur Acad Dermatol Venereol. 2014; 28(Suppl 1): 1–37. DOI: 10.1111/jdv.12311.

17. Drexler B., Buser A., Infanti L., et al. Extracorporeal photopheresis in graft-versus-host disease. Transfus Med Hemother. 2020; 47(3): 214–25. DOI: 10.1159/000508169.

18. Berger M., Albiani R., Sini B., et al. Extracorporeal photopheresis for graftversus-host disease: The role of patient, transplant, and classifi cation criteria and hematologic values on outcome-results from a large single-center study. Transfusion. 2015; 55(4): 736–47. DOI: 10.1111/trf.12900.

19. Hart J.W., Shiue L.H., Shpall E.J., et al. Extracorporeal photopheresis in the treatment of graft-versus-host disease: Evidence and opinion. Ther Adv Hematol. 2013; 4(5): 320–34. DOI: 10.1177/2040620713490316.

20. Taverna F., Coluccia P., Arienti F., et al. Biological quality control for extracorporeal photochemotherapy: Assessing mononuclear cell apoptosis levels in ECP bags of chronic GvHD patients. J Clin Apher. 2015; 30(3): 162–70. DOI: 10.1002/jca.21357.

21. Merlin E., Hannani D., Veyrat-Masson R., et al. Cryopreservation of mononuclear cells before extracorporeal photochemotherapy does not impair their antiproliferative capabilities. Cytotherapy. 2011; 13(2): 248–55. DOI: 10.3109/14653249.2010.501787.

22. Pochon C., Reppel L., Halle P., et al. Cryopreservation as a way to maintain extracorporeal photopheresis regimen for GvHD treatment while circumventing patient temporary inability to undergo apheresis. Bone Marrow Transplant. 2017; 52(1): 167–70. DOI: 10.1038/bmt.2016.240.

23. Radwanski K., Heber C., Min K. Cryopreserved ECP-treated lymphocytes maintain apoptotic response and anti-proliferative effect. J Clin Apher. 2015; 30(3): 154–61. DOI: 10.1002/jca.21354.

24. Legitimo A., Consolini R., Failli A., et al. In vitro treatment of monocytes with 8-methoxypsolaren and ultraviolet A light induces dendritic cells with a tolerogenic phenotype. Clin Exp Immunol. 2007; 148(3): 564–72. DOI: 10.1111/j.1365-2249.2007.03372.x.

25. French L.E., Alcindor T., Shapiro M., et al. Graft-versus-host disease Identifi - cation of amplifi ed clonal T cell populations in the blood of patients with chronic graft-versus-host disease: Positive correlation with response to photopheresis. Bone Marrow Transplant. 2002; 30(8): 509–15. DOI: 10.1038/sj.bmt.1703705.

26. Liu G., Wang J., Park Y.-J., et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol. 2008; 181(6): 4240–6. DOI: 10.4049/jimmunol.181.6.4240.

27. Xia C.-Q., Campbell K.A., Clare-Salzler M.J. Extracorporeal photopheresisinduced immune tolerance: A focus on modulation of antigen-presenting cells and induction of regulatory T cells by apoptotic cells. Curr Opin Organ Transplant. 2009; 14(4): 338–43. DOI: 10.1097/MOT.0b013e32832ce943.

28. Bladon J., Taylor P.C. Extracorporeal photopheresis: A focus on apoptosis and cytokines. J Dermatol Sci. 2006; 43(2): 85–94. DOI: 10.1016/j.jdermsci.2006.05.004.

29. Lamioni A., Parisi F., Isacchi G., et al. The immunological effects of extracorporeal photopheresis unraveled: Induction of tolerogenic dendritic cells in vitro and regulatory T cells in vivo. Transplantation. 2005; 79(7): 846–50. DOI: 10.1097/01.tp.0000157278.02848.c7.

30. Di Biaso I., Di Maio L., Bugarin C., et al. Regulatory T cells and extracorporeal photochemotherapy: Correlation with clinical response and decreased frequency of proinfl ammatory T cells. Transplantation. 2009; 87(9): 1422–5. DOI: 10.1097/TP.0b013e3181a27a5d.

31. Bladon J., Taylor P.C. Early reduction in number of T cells producing proinfl ammatory cytokines, observed after extracorporeal photopheresis, is not linked to apoptosis induction. Transplant Proc. 2003; 35(4): 1328–32. DOI: 10.1016/S0041-1345(03)00477-9.

32. Wang L., Ni M., Hückelhoven-Krauss A., et al. Modulation of B cells and homing marker on NK cells through extracorporeal photopheresis in patients with steroid-refractory/resistant graft-vs.-host disease without hampering antiviral/anti-leukemic effects. Front Immunol. 2018; 9: 2207. DOI: 10.3389/fi mmu.2018.02207.

33. Bladon J., Taylor P.C. Lymphocytes treated by extracorporeal photopheresis can down-regulate cytokine production in untreated monocytes. Photodermatol Photoimmunol Photomed. 2005; 21(6): 293–302. DOI: 10.1111/j.1600-0781.2005.00192.x.

34. Craciun L.I., Stordeur P., Schandené L., et al. Increased production of interleukin-10 and interleukin-1 receptor antagonist after extracorporeal photochemotherapy in chronic graft-versus-host disease. Transplantation. 2002; 74(7): 995–1000. DOI: 10.1097/00007890-200210150-00017.

35. Bladon J., Taylor P.C. Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T-cell lymphoma and graft-versus-host disease patients. Br J Haematol. 1999; 107(4): 707–11. DOI: 10.1046/j.1365-2141.1999.01773.x.

36. Di Renzo M., Rubegni P., Sbano P., et al. ECP-treated lymphocytes of chronic graft-versus-host disease patients undergo apoptosis which involves both the Fas/FasL system and the Bcl-2 protein family. Arch Dermatol Res. 2003; 295(5): 175–82. DOI: 10.1007/s00403-003-0415-6.

37. Heshmati F. Updating ECP action mechanisms. Transfus Apher Sci. 2014; 50(3): 330–9. DOI: 10.1016/J.TRANSCI.2014.04.003.

38. Daniele N., Del Proposto G., Cerrone P., et al. Evaluation of cell death after treatment with extracorporeal photopheresis. Transfus Apher Sci. 2012; 46(1): 53–7. DOI: 10.1016/J.TRANSCI.2011.11.002.

39. Hannani D., Merlin E., Gabert F., et al. Photochemotherapy induces a faster apoptosis of alloreactive activated T cells than of nonalloreactive resting T cells in graft versus host disease. Transplantation. 2010; 90(11): 1232–8. DOI: 10.1097/tp.0b013e3181fa4eb6.

40. Hannani D., Gabert F., Laurin D., et al. Photochemotherapy induces the apoptosis of monocytes without impairing their function. Transplantation. 2010; 89(5): 492–9. DOI: 10.1097/TP.0b013e3181c6ffd3.


Review

For citations:


Vasilyeva V.A., Kuzmina L.A., Petinati N.A., Drize N.I., Kamelskikh D.V., Gaponova T.V., Nikiforova K.A., Davidova Yu.O., Kapranov N.M., Galtceva I.V., Parovichnikova E.N., Savchenko V.G. The effect of cryopreservation on the parameters of mononuclear apoptosis during extracorporeal photopheresis. Russian journal of hematology and transfusiology. 2021;66(3):386-394. (In Russ.) https://doi.org/10.35754/0234-5730-2021-66-3-386-394

Views: 617


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-5730 (Print)
ISSN 2411-3042 (Online)