Interim results of the PML-16, PML-19 protocols for primary mediastinal large B-cell lymphoma therapy
https://doi.org/10.35754/0234-5730-2022-67-3-328-350
Abstract
Introduction. Primary mediastinal lymphoma (PML) is an aggressive lymphoid tumor treatment success of which is determined by induction therapy. To date, none of the standard chemotherapy regimens (CT) have demonstrated an advantage in efficacy. Intensive therapy programs are associated with high toxicity.
Aim — to evaluate the efficacy and toxicity of two pilot prospective treatment protocols PML-16 and PML-19 as well as the possibility of using the analysis of freely circulating tumor DNA (ctDNA) to assess MRD in patients with PML.
Materials and methods. From January 2016 to January 2022, 34 previously untreated PML patients were included in the study; average age — 32; stage > I — in 60 %; extramediastinal lesions — in 14.7 %; bulky disease — in 73.5 % of patients. Positron emission tomography combined with computed tomography (PET-CT) was performed; ctDNA was determined to assess the completeness of remission.
Results. Eighteen patients received treatment according to the PML-16 protocol (6 courses of chemotherapy; 2 blocks of RmNHL-BFM-90 + 4 courses of R-EPOCH). After the end of therapy, all 18 patients achieved PET-negative remission. The next 16 patients received treatment according to the PML-19 protocol (4 courses of chemotherapy; 2 blocks of R-mNHL-BFM-90 + 2 courses of R-EPOCH) in combination with lenalidomide. After the end of therapy, 9 (56 %) patients achieved PET-negative remission; 7 (44 %) retained pathological activity (D4–5 points). After 3 and 6 months 15 (94 %) patients achieved normalization of metabolic activity. Considering the high frequency of false-positive results in patients with PML, a ctDNA study was performed to determine the depth of remission in 15 patients. After the end of therapy, all 15 patients had complete elimination of ctDNA. Of these, 5 (33 %) remained PET-positive at the end of treatment. During further observation, after 3–6 months, in 4 patients the level of metabolic activity decreased to physiological without the use of consolidating therapy. After the end of therapy, one patient suffered the new coronavirus infection, COVID-19. A month later, residual formation of SUVmax 14.2 remained in the mediastinum. The patient is currently under observation. With a median follow-up of 36 months (9 to 76 months) all 34 patients are in remission.
Conclusion. The effectiveness of PML-16 made it possible to abandon the consolidation therapy and refuted the idea of the need for 6 courses of CT. The combination of programs based on the application of the principle of high-dose shortpulse induction of remission (R-mNHL-BFM-90) in combination with the prolonged administration of medium doses (R-EPOCH) was crucial in achieving a successful result. The inclusion of lenalidomide in the “PML-19” program made it possible to achieve complete remission in 100 % of cases after 4 courses. The possibility of using DNA analysis to assess MRD in patients with PML was shown.
About the Authors
N. G. GabeevaRussian Federation
Nelli G. Gabeeva, Cand. Sci. (Med.), Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
D. A. Koroleva
Russian Federation
Daria A. Koroleva, Cand. Sci. (Med.), Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
S. A. Tatarnikova
Russian Federation
Svetlana A. Tatarnikova, Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
A. K. Smolianinova
Russian Federation
Anna K. Smolianinova, Cand. Sci. (Med.), Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
D. S. Badmazhapova
Russian Federation
Darima S. Badmazhapova, Cand. Sci. (Med.), Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and He- matopoietic Stem Cell Transplantation Unit
125167, Moscow
S. Yu. Smirnova
Russian Federation
Svetlana Yu. Smirnova, Cand. Sci. (Med.), Researcher, Laboratory of Molecular Hematology
125167, Moscow
E. E. Nikulina
Russian Federation
Elena E. Nikulina, Researcher, Laboratory of Molecular Hematology
125167, Moscow
A. V. Belyaeva
Russian Federation
Anastasiya V. Belyaeva, Hematologist, Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Trans- plantation Unit
125167, Moscow
E. G. Gemdzhian
Russian Federation
Eduard G. Gemdzhian, Researcher, Laboratory for Mental and Neurological Disorders in Hematological Malignancies
125167, Moscow
V. A. Lapin
Russian Federation
Valeriy A. Lapin, Chief Hematologist of the Department of Healthcare and Pharmacy of Yaroslavl region
150062, Yaroslavl
E. R. Moskalets
Russian Federation
Elina R. Moskalets, Radiologist, JSC
129090, Moscow
I. E. Kostina
Russian Federation
Irina E. Kostina, Cand. Sci. (Med.), Head of Radiology Department
125167, Moscow
Y. K. Mangasarova
Russian Federation
Yiana K. Mangasarova, Cand. Sci. (Med.), Head of the Department of Chemotherapy of Lymphatic tumors with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
S. A. Shutov
Russian Federation
Sergei A. Shutov, Dr. Sci. (Med.), Leading Researcher of the Department of Surgery
125167, Moscow
B. V. Biderman
Russian Federation
Bella V. Biderman, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology
125167, Moscow
A. B. Sudarikov
Russian Federation
Andrey B. Sudarikov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Genetics
125167, Moscow
T. N. Obukhova
Russian Federation
Tatiana N. Obukhova, Cand. Sci. (Med.), Head of the Karyology Laboratory
125167, Moscow
A. M. Kovrigina
Russian Federation
Alla M. Kovrigina, Dr. Sci. (Biol.), Head of the Pathological Department
125167, Moscow
G. M. Galstyan
Russian Federation
Gennady M. Galstyan, Dr. Sci. (Med.), Head of the Department of Resuscitation and Intensive Care
125167, Moscow
E. E. Zvonkov
Russian Federation
Evgeny E. Zvonkov, Dr. Sci. (Med), Head of the Department of Hematology and Chemotherapy of Lymphomas with Bone Marrow and Hematopoietic Stem Cell Transplantation Unit
125167, Moscow
References
1. Vassilakopoulos T.P., Pangalis G.A., Katsigiannis A., et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone with or without radiotherapy in primary mediastinal large B‐cell lymphoma: The emerging standard of care. Oncologist. 2012; 17(2): 239–49. DOI: 10.1634/theoncologist.2011-0275.
2. Zinzani P.L., Stefoni V., Finolezzi E., et al. Rituximab combined with MACOPB or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: A retrospective study. Clin Lymphoma Myeloma. 2009; 9(5): 381–5. DOI: 10.3816/CLM.2009.n.074.
3. Malenda A., Kołkowska-Leśniak A., Puła B., et al. Outcomes of treatment with dose-adjusted EPOCH-R or R-CHOP in primary mediastinal large B-cell lymphoma. Eur J Haematol. 2020; 104(1): 59–66. DOI: 10.1111/ejh.13337.
4. Gleeson M., Hawkes E.A., Cunningham D., et al. Rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) in the management of primary mediastinal B-cell lymphoma: A subgroup analysis of the UK NCRI R-CHOP 14 versus 21 trial. Br J Haematol. 2016; 175(4): 668–72. DOI: 10.1111/ bjh.14287.
5. Rieger M., Österborg A., Pettengell R., et al. Primary mediastinal B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: Results of the Mabthera International Trial Group study. Ann Oncol. 2011; 22(3): 664–70. DOI: 10.1093/annonc/mdq418.
6. Dunleavy K., Pittaluga S., Maeda L.S., et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013; 368(15): 1408–16. DOI: 10.1056/NEJMoa1214561.
7. Kuruvilla J., Pintilie M., Tsang R., et al. Salvage chemotherapy and autologous stem cell transplantation are inferior for relapsed or refractory primary mediastinal large B-cell lymphoma compared with diffuse large B-cell lymphoma. Leuk Lymphoma. 2008; 49(7): 1329–36. DOI: 10.1080/10428190802108870.
8. Soumerai J.D., Hellmann M.D., Feng Y., et al. Treatment of primary mediastinal B-cell lymphoma with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone is associated with a high rate of primary refractory disease. Leuk Lymphoma. 2014; 55(3): 538–43. DOI: 10.3109/10428194.2013.810738.
9. Zinzani P.L., Broccoli A. Optimizing outcomes in primary mediastinal B-cell lymphoma. Hematol Oncol Clin North Am. 2016; 30(6): 1261–75. DOI: 10.1016/j. hoc.2016.07.011.
10. Armand P., Rodig S., Melnichenko V., et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J Clin Oncol. 2019; 37(34): 3291–9. DOI: 10.1200/JCO.19.01389.
11. Zinzani P.L., Santoro A., Gritti G., et al. Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: Efficacy and safety from the phase II CheckMate 436 Study. J Clin Oncol. 2019; 37(33): 3081–9. DOI: 10.1200/JCO.19.01492.
12. Zinzani P.L., Pellegrini C., Chiappella A., et al. Brentuximab vedotin in relapsed primary mediastinal large B-cell lymphoma: Results from a phase 2 clinical trial. Blood. 2017; 129(16): 2328–30. DOI: 10.1182/blood-2017-01-764258.
13. Neelapu S.S., Locke F.L., Bartlett N.L., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377(26): 2531–44. DOI: 10.1056/NEJMoa1707447.
14. Bishop P.C., Wilson W.H., Pearson D., et al. CNS involvement in primary mediastinal large B-cell lymphoma. J Clin Oncol. 1999; 17(8): 2479–85. DOI: 10.1200/jco.1999.17.8.2479.
15. Stefoni V., Broccoli A., Pellegrini C., et al. CNS recurrence of primary mediastinal large b-cell lymphoma after complete remission. J Neurooncol. 2009; 95(1): 135–9. DOI: 10.1007/s11060-009-9898-0.
16. Goldschmidt N., Kleinstern G., Orevi M., et al. Favorable outcome of primary mediastinal large B-cell lymphoma patients treated with sequential RCHOP-RICE regimen without radiotherapy. Cancer Chemother Pharmacol. 2016; 77(5): 1053–60. DOI: 10.1007/s00280-016-3024-8.
17. Camus V., Rossi C., Sesques P., et al. Outcomes after first-line immunochemotherapy for primary mediastinal B-cell lymphoma: A LYSA study. Blood Adv. 2021; 5(19): 3862–72. DOI: 10.1182/bloodadvances.2021004778.
18. De Sanctis V., Alfò M., Di Rocco A., et al. Second cancer incidence in primary mediastinal B-cell lymphoma treated with methotrexate with leucovorin rescue, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin regimen with or without rituximab and mediastinal radiotherapy: Results from a monoinstitutional cohort analysis of long‐term survivors. Hematol Oncol. 2017; 35(4): 554–60. DOI: 10.1002/hon.2377.
19. Chen H., Pan T., He Y., et al. Primary mediastinal B-cell lymphoma: Novel precision therapies and future directions. Front Oncol. 2021; 11: 654854. DOI: 10.3389/fonc.2021.654854.
20. Feuerhake F., Kutok J.L., Monti S., et al. NFκB activity, function, and targetgene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 2005; 106(4): 1392–9. DOI: 10.1182/blood-2004-12-4901.
21. Mansouri L., Noerenberg D., Young E., et al. Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma. Blood. 2016; 128(23): 2666–70. DOI: 10.1182/blood-2016-03-704528.
22. Aoki T., Izutsu K., Suzuki R., et al. Prognostic significance of pleural or pericardial effusion and the implication of optimal treatment in primary mediastinal large B-cell lymphoma: A multicenter retrospective study in Japan. Haematologica. 2014; 99(12): 1817–25. DOI: 10.3324/haematol.2014.111203.
23. Dubois S., Viailly P.J., Mareschal S., et al. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: A LYSA study. Clin Cancer Res. 2016; 22(12): 2919–28. DOI: 10.1158/1078-0432.CCR-15-2305.
24. Scarpa A., Moore P.S., Rigaud G., et al. Molecular features of primary mediastinal B-cell lymphoma: Involvement of p16(INK4A), p53 and c-myc. Br J Haematol. 1999; 107(1): 106–13. DOI: 10.1046/j.1365-2141.1999.01678.x.
25. Melani C., Advani R., Roschewski M., et al. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted EPOCH-R: A paradigm shift in clinical decision making. Haematologica. 2018; 103(8): 1337–44. DOI: 10.3324/haematol.2018.192492.
26. Pinnix C.C., Ng A.K., Dabaja B.S., et al. Positron emission tomography– computed tomography predictors of progression after DA-R-EPOCH for PMBCL. Blood Adv. 2018; 2(11): 1334–43. DOI: 10.1182/bloodadvances.2018017681.
27. Lazarovici J., Terroir M., Arfi-Rouche J., et al. Poor predictive value of positive interim FDG-PET/CT in primary mediastinal large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2017; 44(12): 2018–24. DOI: 10.1007/s00259-017-3758-5.
28. Qin W., Jiang X., You J., et al. Deauville score evaluation of interim PET/CT in primary mediastinal large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2021; 48(11): 3347–50. DOI: 10.1007/s00259-021-05310-6.
29. Lv L., Liu Y. Clinical application of liquid biopsy in non-Hodgkin lymphoma. Front Oncol. 2021; 11: 658234. DOI: 10.3389/fonc.2021.658234.
30. Rossi D., Kurtz D.M., Roschewski M., et al. The development of liquid biopsy for research and clinical practice in lymphomas: Report of the 15-ICML workshop on ctDNA. Hematol Oncol. 2020; 38(1): 34–7. DOI: 10.1002/hon.2704.
31. Cirillo M., Craig A.F.M., Borchmann S., et al. Liquid biopsy in lymphoma: Molecular methods and clinical applications. Cancer Treat Rev. 2020; 91: 102106. DOI: 10.1016/j.ctrv.2020.102106.
32. Huet S., Salles G. Potential of circulating tumor DNA for the management of patients with lymphoma. JCO Oncol Pract. 2020; 16(9): 561–8. DOI: 10.1200/ jop.19.00691.
33. Roschewski M., Dunleavy K., Pittaluga S., et al. Circulating tumour DNA and CT monitoring in patients with untreated diff use large B-cell lymphoma: A correlative biomarker study. Lancet Oncol. 2015; 16(5): 541–9. DOI: 10.1016/S14702045(15)70106-3.
34. Program treatment of diseases of the blood system: A collection of diagnostic algorithms and protocols for the treatment of diseases of the blood system. Ed. Savchenko V.G., Moscow: Praktika; 2018. (In Russian).
35. Swerdlow S.H., Campo E., Harris N.L., et al. World Health Organization classification of tumours of the haematopoietic and lymphoid tissues. Eds. S.H. Swerdlow, E. Campo, N.L. Harris, E.S. Jaffa, S.A. Pileri, H. Stein, J. Thiele. 4th ed. Postgraduate Haematology. 2017: 986–8.
36. Pavlova S., Smardova J., Tom N., et al. Detection and functional analysis of TP53 mutations in CLL. Methods Mol Biol. 2019; 1881: 63–81. DOI: 10.1007/978-1-4939-8876-1_6.
37. https://p53.iarc.fr/TP53GeneVariations.aspx
38. http://vps338341.ovh.net/
39. Cancer Therapy Evaluation Program (CTEP). Common Terminology Criteria for Adverse Events (CTCAE). v.5.0 [5x7]. Cancer Ther Eval Progr. 2017: 155.
40. Barrington S.F., Mikhaeel N.G., Kostakoglu L., et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014; 32(27): 3048–58. DOI: 10.1200/JCO.2013.53.5229.
41. Shipp M.A. Prognostic factors in aggressive non-Hodgkin’s lymphoma: Who has “high-risk” disease? Blood. 1994; 83(5): 1165–73.
42. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993; 329(14): 987–94. DOI: 10.1056/NEJM199309303291402.
43. Oken M.M., Creech R.H., Davis T.E. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982; 5(6): 649–55.
44. Swerdlow S.H., Campo E., Pileri S.A., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20): 2375–90. DOI: 10.1182/blood-2016-01-643569.
45. Zhou J., Wang H.Y. Primary mediastinal large B-cell lymphoma: Diagnostic challenges and recent advances. J Clin Transl Pathol. 2021; 1(1): 21–7. DOI: 10.14218/JCTP.2021.00008.
46. Leithäuser F., Bäuerle M., Huynh M.Q., et al. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. Blood. 2001; 98(9): 2762–70. DOI: 10.1182/blood.V98.9.2762.
47. Lees C., Keane C., Gandhi M.K., et al. Biology and therapy of primary mediastinal B-cell lymphoma: current status and future directions. Br J Haematol. 2019; 185(1): 25–41. DOI: 10.1111/bjh.15778.
48. Fietz T., Knauf W.U., Hänel M., et al. Treatment of primary mediastinal large B cell lymphoma with an alternating chemotherapy regimen based on high-dose methotrexate. Ann Hematol. 2009; 88(5): 433–9. DOI: 10.1007/s00277-0080625-2.
49. Pohlen M., Gerth H.U., Liersch R., et al. Efficacy and toxicity of a rituximab and methotrexate based regimen (GMALL B-ALL/NHL 2002 protocol) in Burkitt’s and primary mediastinal large B-cell lymphoma. Am J Hematol. 2011; 86(12): 61–76. DOI: 10.1002/ajh.22165.
50. Wehde N., Borte G., Liebmann A., et al. Primary mediastinal large B cell lymphoma: Frontline treatment with an alternating chemotherapy regimen based on high dose methotrexate – A single institution experience. J Med Soc. 2017; 31(1): 8–13. DOI: 10.4103/0972-4958.198427.
51. Knörr F., Zimmermann M., Attarbaschi A., et al. Dose-adjusted EPOCH-rituximab or intensified B-NHL therapy for pediatric primary mediastinal large B-cell lymphoma. Haematologica. 2021; 106(12): 3232–5. DOI: 10.3324/haematol.2021.278971.
52. Giulino-Roth L., O’Donohue T., Chen Z., et al. Outcomes of adults and children with primary mediastinal B-cell lymphoma treated with dose-adjusted EPOCH-R. Br J Haematol. 2017; 179(5): 739–47. DOI: 10.1111/bjh.14951.
53. Mangasarova Ya.K., Magomedova A.U., Kravchenko S.K., et al. Eight-year experience in treating aggressive mediastinal large B-cell lymphomas. Terapevticheskii arkhiv. 2013; 85(7); 50–6. (In Russian).
54. Jiao C., Zvonkov E., Lai X., et al. 4SCAR2.0: A multi-CAR-T therapy regimen for the treatment of relapsed/refractory B cell lymphomas. Blood Cancer J. 2021; 11(3): 59. DOI: 10.1038/s41408-021-00455-x.
55. Zhang R., Li Y., Tu S., et al. Improved safety and efficacy of a multi-target chimeric antigen receptor modified T cell therapy (4SCAR2.0) against relapsed or refractory lymphomas. Blood. 2020; 136(Suppl 1): 47. DOI: 10.1182/ blood-2020-141515.
56. Wilson W.H., Grossbard M.L., Pittaluga S., et al. Dose-adjusted EPOCH chemotherapy for untreated large B-cell lymphomas: A pharmacodynamic approach with high efficacy. Blood. 2002; 99(8): 2685–93. DOI: 10.1182/blood. v99.8.2685.
57. Ackland S.P., Ratain M.J., Vogelzang N.J., et al. Pharmacokinetics and pharmacodynamics of long-term continuous-infusion doxorubicin. Clin Pharmacol Ther. 1989; 45(4): 340–7. DOI: 10.1038/clpt.1989.39.
58. Martelli M., Zucca E., Botto B., et al. Impact of different induction regimens on the outcome of primary mediastinal B-cell lymphoma in the prospective IELSG 37 trial. Hematol Oncol. 2021; 39(S2): 90–2. DOI: 10.1002/hon.49_2879.
59. Kim S.J., Yoon D.H., Kang H.J., et al. Ruxolitinib shows activity against Hodgkin lymphoma but not primary mediastinal large B-cell lymphoma. BMC Cancer. 2019; 19(1): 1080. DOI: 10.1186/s12885-019-6303-z.
60. Fakhri B, Ai W. Current and emerging treatment options in primary mediastinal B-cell lymphoma. Ther Adv Hematol. 2021; 12: 20406207211048959. DOI: 10.1177/20406207211048959.
61. Chapuy B., Stewart C., Dunford A., et al. Comprehensive genomic analysis of primary mediastinal B-cell lymphoma. Blood. 2018; 132(S1): 1564. DOI: 10.1182/blood-2018-99-118135.
62. Kuznetsova S.A., Surin V.L., Mangasarova Y.K., et al. Cytogenetic and molecular genetic abnormalities of CIITA gene in patients with primary mediastinal (thymic) large B-Cell lymphoma. Klinicheskaya onkogematologiya. 2021; 14(2): 173–8. DOI: 10.21320/2500-2139-2021-14-2-173-178. (In Russian).
63. Bonneville R., Krook M.A., Kautto E.A., et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017; 2017: PO.17.00073. DOI: 10.1200/PO.17.00073.
64. Mottok A., Woolcock B., Chan F.C., et al. Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep. 2015; 13(7): 1418–31. DOI: 10.1016/j.celrep.2015.10.008.
65. Mottok A., Steidl C. Genomic alterations underlying immune privilege in malignant lymphomas. Curr Opin Hematol. 2015; 22(4): 343–54. DOI: 10.1097/MOH.0000000000000155.
66. Lam L.T., Davis R.E., Pierce J., et al. Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res. 2005; 11(1): 28–40. DOI: 10.1158/10780432.28.11.1.
67. Shmitz R., Hansmann M.L., Bohle V., et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009; 206(5): 981–9. DOI: 10.1084/jem.20090528.
68. Nowakowski G.S., LaPlant B., Macon W.R., et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: A phase II study. J Clin Oncol. 2015; 33(3): 251–7. DOI: 10.1200/JCO.2014.55.5714.
69. Gabeeva N.G., Koroleva D.A., Smolyaninova A.K., et al. Chemotherapy according to the R-mNHL-BFM-90 Protocol in combination with lenalidomide as the first line therapy in patients with mum1-positive diffusive large B-cell lymphoma and follicular lymphoma grade 3B. Gematologiya i Transfusiologiya. 2019; 64(2): 52–66. DOI: 10.35754/0234-5730-2019-64-2-52-66. (In Russian).
70. Andritsos L.A., Johnson A.J., Lozanski G., et al. Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol. 2008; 26(15): 2519– 25. DOI: 10.1200/JCO.2007.13.9709.
71. Eve H.E., Rule S.A.J. Lenalidomide-induced tumour flare reaction in mantle cell lymphoma. Br J Haematol. 2010; 151(4): 410–2. DOI: 10.1111/j.1365-2141.2010.08376.x.
72. Ruan J., Martin P., Christos P., et al. Five-year follow-up of lenalidomide plus rituximab as initial treatment of mantle cell lymphoma. Blood. 2018; 132(19): 2016–25. DOI: 10.1182/blood-2018-07-859769.
73. Martelli M., Finolezzi E. Fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: Results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J Clin Oncol. 2014; 32(17): 1769–75. DOI: 10.1200/ JCO.2013.51.7524.
74. Oliveira K.C.S., Ramos I.B., Silva J.M.C., et al. Current perspectives on circulating tumor DNA, precision medicine, and personalized clinical management of cancer. Mol Cancer Res. 2020; 18(4): 517–28. DOI: 10.1158/1541-7786. MCR-19-0768.
75. Kurtz D.M., Scherer F., Jin M.C., et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018; 36(28): 2845–53. DOI: 10.1200/JCO.2018.78.5246.
Review
For citations:
Gabeeva N.G., Koroleva D.A., Tatarnikova S.A., Smolianinova A.K., Badmazhapova D.S., Smirnova S.Yu., Nikulina E.E., Belyaeva A.V., Gemdzhian E.G., Lapin V.A., Moskalets E.R., Kostina I.E., Mangasarova Y.K., Shutov S.A., Biderman B.V., Sudarikov A.B., Obukhova T.N., Kovrigina A.M., Galstyan G.M., Zvonkov E.E. Interim results of the PML-16, PML-19 protocols for primary mediastinal large B-cell lymphoma therapy. Russian journal of hematology and transfusiology. 2022;67(3):328-350. (In Russ.) https://doi.org/10.35754/0234-5730-2022-67-3-328-350